Math Problem Statement

rad(25-4x^2)dx

Solution

It seems you want to integrate the function 254x2\sqrt{25 - 4x^2} with respect to xx. This integral can be solved using a trigonometric substitution.

The integral is:

254x2dx\int \sqrt{25 - 4x^2} \, dx

Step-by-Step Solution:

  1. Trigonometric Substitution: We use the substitution:

    x=52sinθx = \frac{5}{2} \sin \theta

    Then, dx=52cosθdθdx = \frac{5}{2} \cos \theta \, d\theta.

  2. Rewrite the Integral: Substitute xx and dxdx in the integral:

    254(52sinθ)252cosθdθ\int \sqrt{25 - 4\left(\frac{5}{2} \sin \theta\right)^2} \cdot \frac{5}{2} \cos \theta \, d\theta

    Simplify the expression inside the square root:

    254(254sin2θ)=2525sin2θ=25(1sin2θ)=25cos2θ25 - 4 \left(\frac{25}{4} \sin^2 \theta\right) = 25 - 25 \sin^2 \theta = 25 (1 - \sin^2 \theta) = 25 \cos^2 \theta

    So, the integral becomes:

    25cos2θ52cosθdθ=5cosθ52cosθdθ\int \sqrt{25 \cos^2 \theta} \cdot \frac{5}{2} \cos \theta \, d\theta = \int 5 \cos \theta \cdot \frac{5}{2} \cos \theta \, d\theta

    This simplifies to:

    252cos2θdθ\frac{25}{2} \int \cos^2 \theta \, d\theta

  3. Integrate: Use the half-angle identity for cosine:

    cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}

    Thus, the integral becomes:

    2521+cos(2θ)2dθ=254(1+cos(2θ))dθ\frac{25}{2} \int \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{25}{4} \int (1 + \cos(2\theta)) \, d\theta

    Integrating term-by-term:

    254(θ+sin(2θ)2)+C\frac{25}{4} \left( \theta + \frac{\sin(2\theta)}{2} \right) + C

  4. Back-Substitute θ\theta with xx: Recall that x=52sinθx = \frac{5}{2} \sin \theta, so sinθ=2x5\sin \theta = \frac{2x}{5}. Then, θ=arcsin(2x5)\theta = \arcsin\left(\frac{2x}{5}\right).

    Also, using the double-angle identity, sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta. Since cosθ=1sin2θ=1(2x5)2\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{2x}{5}\right)^2}, we have:

    sin(2θ)=22x51(2x5)2=4x514x225\sin(2\theta) = 2 \cdot \frac{2x}{5} \cdot \sqrt{1 - \left(\frac{2x}{5}\right)^2} = \frac{4x}{5} \sqrt{1 - \frac{4x^2}{25}}

  5. Final Answer:

    254(arcsin(2x5)+124x514x225)+C\frac{25}{4} \left( \arcsin\left(\frac{2x}{5}\right) + \frac{1}{2} \cdot \frac{4x}{5} \sqrt{1 - \frac{4x^2}{25}} \right) + C

    Simplify the expression:

    254arcsin(2x5)+5x214x225+C\frac{25}{4} \arcsin\left(\frac{2x}{5}\right) + \frac{5x}{2} \sqrt{1 - \frac{4x^2}{25}} + C

Conclusion:

The integral of 254x2\sqrt{25 - 4x^2} with respect to xx is:

254x2dx=254arcsin(2x5)+5x214x225+C\int \sqrt{25 - 4x^2} \, dx = \frac{25}{4} \arcsin\left(\frac{2x}{5}\right) + \frac{5x}{2} \sqrt{1 - \frac{4x^2}{25}} + C

Would you like more details or have any questions?

Related Questions:

  1. How do you perform trigonometric substitutions for integrals?
  2. What are some common integrals involving square roots of quadratic expressions?
  3. How do you derive the half-angle identities in trigonometry?
  4. What is the method for back-substitution after solving an integral using substitution?
  5. Can this method be applied to definite integrals? How?

Tip:

When using trigonometric substitution, always consider the domain of the function and the appropriate range for the inverse trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Trigonometry
Calculus

Formulas

Trigonometric substitution: x = (5/2)sin(θ)
Half-angle identity: cos^2(θ) = (1 + cos(2θ))/2

Theorems

Trigonometric Substitution Theorem
Integration Techniques

Suitable Grade Level

Grades 11-12, College Level