Math Problem Statement

Evaluate the integral using the indicated trigonometric substitution: Integral of (sqrt(4x^2 - 25)/x) dx, where x = 5/2 sec(theta).

Solution

The given problem is an integral that needs to be solved using trigonometric substitution. Here's the expression:

4x225xdx\int \frac{\sqrt{4x^2 - 25}}{x} \, dx

The substitution provided is:

x=52sec(θ)x = \frac{5}{2} \sec(\theta)

Step-by-Step Solution

  1. Substitute x=52sec(θ)x = \frac{5}{2} \sec(\theta):

    First, differentiate x=52sec(θ)x = \frac{5}{2} \sec(\theta) to find dxdx:

    dx=52sec(θ)tan(θ)dθdx = \frac{5}{2} \sec(\theta) \tan(\theta) \, d\theta

  2. Rewrite the integrand:

    Start by substituting x=52sec(θ)x = \frac{5}{2} \sec(\theta) into the expression inside the square root.

    4x225=4(52sec(θ))2254x^2 - 25 = 4\left(\frac{5}{2} \sec(\theta)\right)^2 - 25

    Simplifying the expression:

    4x225=4254sec2(θ)25=25sec2(θ)25=25(sec2(θ)1)4x^2 - 25 = 4 \cdot \frac{25}{4} \sec^2(\theta) - 25 = 25 \sec^2(\theta) - 25 = 25(\sec^2(\theta) - 1)

    Using the trigonometric identity sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta), we get:

    4x225=25tan2(θ)4x^2 - 25 = 25 \tan^2(\theta)

    Therefore, the square root becomes:

    4x225=25tan2(θ)=5tan(θ)\sqrt{4x^2 - 25} = \sqrt{25 \tan^2(\theta)} = 5 \tan(\theta)

  3. Substitute into the integral:

    Now substitute both 4x225\sqrt{4x^2 - 25} and dxdx into the integral:

    4x225xdx=5tan(θ)52sec(θ)52sec(θ)tan(θ)dθ\int \frac{\sqrt{4x^2 - 25}}{x} \, dx = \int \frac{5 \tan(\theta)}{\frac{5}{2} \sec(\theta)} \cdot \frac{5}{2} \sec(\theta) \tan(\theta) \, d\theta

    Simplify the expression:

    =5tan2(θ)dθ= \int 5 \tan^2(\theta) \, d\theta

  4. Solve the integral:

    We can use the identity tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1 to simplify the integral:

    5tan2(θ)dθ=5(sec2(θ)1)dθ\int 5 \tan^2(\theta) \, d\theta = 5 \int (\sec^2(\theta) - 1) \, d\theta

    This separates into two integrals:

    5sec2(θ)dθ51dθ5 \int \sec^2(\theta) \, d\theta - 5 \int 1 \, d\theta

    These are straightforward to solve:

    5(tan(θ))5θ+C5 \left(\tan(\theta)\right) - 5\theta + C

    So the solution in terms of θ\theta is:

    5tan(θ)5θ+C5 \tan(\theta) - 5\theta + C

  5. Substitute back x=52sec(θ)x = \frac{5}{2} \sec(\theta):

    Recall that x=52sec(θ)x = \frac{5}{2} \sec(\theta), so sec(θ)=2x5\sec(\theta) = \frac{2x}{5}. Therefore:

    θ=sec1(2x5)\theta = \sec^{-1}\left(\frac{2x}{5}\right)

    Also, tan(θ)\tan(\theta) can be found from the right triangle relationship:

    tan(θ)=sec2(θ)1=(2x5)21=4x2255\tan(\theta) = \sqrt{\sec^2(\theta) - 1} = \sqrt{\left(\frac{2x}{5}\right)^2 - 1} = \frac{\sqrt{4x^2 - 25}}{5}

    Thus, the final solution becomes:

    4x225x5sec1(2x5)+C\frac{\sqrt{4x^2 - 25}}{x} - 5 \sec^{-1}\left(\frac{2x}{5}\right) + C

This is the evaluated integral using trigonometric substitution.


Do you want more details or have any questions?

Here are some related questions:

  1. What are the steps to solve other integrals using trigonometric substitution?
  2. How does the identity sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta) help simplify integrals?
  3. What are other common trigonometric substitutions used for integrals?
  4. How can you derive the inverse trigonometric functions for specific substitutions?
  5. What is the difference between solving integrals with trigonometric substitution versus other methods?

Tip: Trigonometric identities like sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta) are essential when simplifying expressions during integration steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Substitution
Integral Calculus

Formulas

dx = (5/2) sec(theta) tan(theta) dtheta
4x^2 - 25 = 25 (sec^2(theta) - 1)
Integral of tan^2(theta) = Integral of (sec^2(theta) - 1)

Theorems

Pythagorean Identity

Suitable Grade Level

University Level