Math Problem Statement

integral of square root of 81+x^2 /x

Solution

To solve the integral of 81+x2x\frac{\sqrt{81 + x^2}}{x}, we can use a substitution method. Let's follow these steps:

Step-by-step solution:

Given: I=81+x2xdxI = \int \frac{\sqrt{81 + x^2}}{x} \, dx

Step 1: Substitution

We can use the substitution: x=9tan(θ)x = 9 \tan(\theta) Then, dx=9sec2(θ)dθdx = 9 \sec^2(\theta) \, d\theta and using the Pythagorean identity, we have: x2=81tan2(θ)so81+x2=81(1+tan2(θ))=81sec2(θ)x^2 = 81 \tan^2(\theta) \quad \text{so} \quad 81 + x^2 = 81(1 + \tan^2(\theta)) = 81 \sec^2(\theta)

Thus, 81+x2=9sec(θ)\sqrt{81 + x^2} = 9 \sec(\theta).

Step 2: Substituting into the integral

Now substitute these expressions back into the integral: I=9sec(θ)9tan(θ)9sec2(θ)dθI = \int \frac{9 \sec(\theta)}{9 \tan(\theta)} \cdot 9 \sec^2(\theta) \, d\theta Simplifying: I=sec(θ)tan(θ)9sec2(θ)dθI = \int \frac{\sec(\theta)}{\tan(\theta)} \cdot 9 \sec^2(\theta) \, d\theta I=9sec3(θ)tan(θ)dθI = 9 \int \frac{\sec^3(\theta)}{\tan(\theta)} \, d\theta

Step 3: Simplify the integrand

We can rewrite sec3(θ)tan(θ)\frac{\sec^3(\theta)}{\tan(\theta)} as: sec3(θ)tan(θ)=1sin(θ)(since sec(θ)=1cos(θ) and tan(θ)=sin(θ)cos(θ))\frac{\sec^3(\theta)}{\tan(\theta)} = \frac{1}{\sin(\theta)} \quad \text{(since } \sec(\theta) = \frac{1}{\cos(\theta)} \text{ and } \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}) Thus, the integral becomes: I=9dθsin(θ)I = 9 \int \frac{d\theta}{\sin(\theta)}

This is a standard integral, where: 1sin(θ)dθ=lntan(θ2)+C\int \frac{1}{\sin(\theta)} \, d\theta = \ln \left| \tan\left(\frac{\theta}{2}\right) \right| + C

Step 4: Back-substitute θ\theta

Now we substitute back θ\theta in terms of xx. Recall that x=9tan(θ)x = 9 \tan(\theta), so: tan(θ)=x9\tan(\theta) = \frac{x}{9} Thus, the integral becomes: I=9lnx9+1+x281+CI = 9 \ln\left| \frac{x}{9} + \sqrt{1 + \frac{x^2}{81}} \right| + C

Final Answer:

I=9lnx+x2+81+CI = 9 \ln\left| x + \sqrt{x^2 + 81} \right| + C


Would you like further details on any step?

Here are 5 related questions:

  1. How do trigonometric substitutions work in integrals?
  2. What is the Pythagorean identity in trigonometry?
  3. How do you compute the integral of secant functions?
  4. What are other methods to solve integrals involving square roots?
  5. Can the integral of secant be solved using different approaches?

Tip: When dealing with integrals involving square roots of sums of squares, trigonometric substitutions are often a powerful tool!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometric Substitution

Formulas

x = 9 tan(θ)
dx = 9 sec^2(θ) dθ
81 + x^2 = 81 sec^2(θ)
∫(1/sin(θ)) dθ = ln |tan(θ/2)| + C

Theorems

Pythagorean Identity: 1 + tan^2(θ) = sec^2(θ)
Trigonometric Substitution

Suitable Grade Level

College Level - Calculus II