Math Problem Statement

Integral(sqrt(x^(2)-1))

Solution

To evaluate the integral x21dx\int \sqrt{x^2 - 1} \, dx, we can use trigonometric substitution. Here are the steps:

  1. Substitute: Let x=sec(θ)x = \sec(\theta), hence dx=sec(θ)tan(θ)dθdx = \sec(\theta) \tan(\theta) \, d\theta.

  2. Simplify the Integrand: x21=sec2(θ)1=tan2(θ)=tan(θ)\sqrt{x^2 - 1} = \sqrt{\sec^2(\theta) - 1} = \sqrt{\tan^2(\theta)} = |\tan(\theta)| Since sec(θ)1\sec(\theta) \geq 1, θ\theta ranges from 00 to π/2\pi/2 or from π\pi to 3π/23\pi/2, and tan(θ)0\tan(\theta) \geq 0, we can write tan(θ)=tan(θ)|\tan(\theta)| = \tan(\theta).

  3. Rewrite the Integral: x21dx=tan(θ)sec(θ)tan(θ)dθ=tan2(θ)sec(θ)dθ\int \sqrt{x^2 - 1} \, dx = \int \tan(\theta) \sec(\theta) \tan(\theta) \, d\theta = \int \tan^2(\theta) \sec(\theta) \, d\theta

  4. Simplify: Use the identity tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1: tan2(θ)sec(θ)dθ=(sec2(θ)1)sec(θ)dθ=(sec3(θ)sec(θ))dθ\int \tan^2(\theta) \sec(\theta) \, d\theta = \int (\sec^2(\theta) - 1) \sec(\theta) \, d\theta = \int (\sec^3(\theta) - \sec(\theta)) \, d\theta

  5. Integrate: The integral can be split into two parts: sec3(θ)dθsec(θ)dθ\int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta

    The integrals are: sec(θ)dθ=lnsec(θ)+tan(θ)+C1\int \sec(\theta) \, d\theta = \ln |\sec(\theta) + \tan(\theta)| + C_1 sec3(θ)dθ=12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)+C2\int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C_2

    Combining these: sec3(θ)dθsec(θ)dθ=12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)lnsec(θ)+tan(θ)+C\int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| - \ln |\sec(\theta) + \tan(\theta)| + C =12sec(θ)tan(θ)12lnsec(θ)+tan(θ)+C= \frac{1}{2} \sec(\theta) \tan(\theta) - \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C

  6. Substitute Back: Recall that x=sec(θ)x = \sec(\theta), so sec(θ)=x\sec(\theta) = x and tan(θ)=x21\tan(\theta) = \sqrt{x^2 - 1}: x21dx=12xx2112lnx+x21+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln |x + \sqrt{x^2 - 1}| + C

Therefore, the final result is: x21dx=12xx2112lnx+x21+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln |x + \sqrt{x^2 - 1}| + C

Would you like more details or have any questions?

Here are some questions you might want to explore next:

  1. How do you find the integral of exsin(x)e^x \sin(x)?
  2. What are the steps to solve a second-order differential equation?
  3. How do you evaluate the limit of a function as xx approaches infinity?
  4. What is the series expansion for sin(x)\sin(x)?
  5. How do you find the derivative of a product of two functions?

Tip: For integrals involving square roots of quadratic expressions, trigonometric substitutions are often very useful.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution

Formulas

Integral of secant functions

Theorems

-

Suitable Grade Level

Advanced High School or College