SolutionTo evaluate the integral ∫ x 2 − 1 d x \int \sqrt{x^2 - 1} \, dx ∫ x 2 − 1 d x , we can use trigonometric substitution. Here are the steps:
Substitute : Let x = sec ( θ ) x = \sec(\theta) x = sec ( θ ) , hence d x = sec ( θ ) tan ( θ ) d θ dx = \sec(\theta) \tan(\theta) \, d\theta d x = sec ( θ ) tan ( θ ) d θ .
Simplify the Integrand :
x 2 − 1 = sec 2 ( θ ) − 1 = tan 2 ( θ ) = ∣ tan ( θ ) ∣ \sqrt{x^2 - 1} = \sqrt{\sec^2(\theta) - 1} = \sqrt{\tan^2(\theta)} = |\tan(\theta)| x 2 − 1 = sec 2 ( θ ) − 1 = tan 2 ( θ ) = ∣ tan ( θ ) ∣
Since sec ( θ ) ≥ 1 \sec(\theta) \geq 1 sec ( θ ) ≥ 1 , θ \theta θ ranges from 0 0 0 to π / 2 \pi/2 π /2 or from π \pi π to 3 π / 2 3\pi/2 3 π /2 , and tan ( θ ) ≥ 0 \tan(\theta) \geq 0 tan ( θ ) ≥ 0 , we can write ∣ tan ( θ ) ∣ = tan ( θ ) |\tan(\theta)| = \tan(\theta) ∣ tan ( θ ) ∣ = tan ( θ ) .
Rewrite the Integral :
∫ x 2 − 1 d x = ∫ tan ( θ ) sec ( θ ) tan ( θ ) d θ = ∫ tan 2 ( θ ) sec ( θ ) d θ \int \sqrt{x^2 - 1} \, dx = \int \tan(\theta) \sec(\theta) \tan(\theta) \, d\theta = \int \tan^2(\theta) \sec(\theta) \, d\theta ∫ x 2 − 1 d x = ∫ tan ( θ ) sec ( θ ) tan ( θ ) d θ = ∫ tan 2 ( θ ) sec ( θ ) d θ
Simplify : Use the identity tan 2 ( θ ) = sec 2 ( θ ) − 1 \tan^2(\theta) = \sec^2(\theta) - 1 tan 2 ( θ ) = sec 2 ( θ ) − 1 :
∫ tan 2 ( θ ) sec ( θ ) d θ = ∫ ( sec 2 ( θ ) − 1 ) sec ( θ ) d θ = ∫ ( sec 3 ( θ ) − sec ( θ ) ) d θ \int \tan^2(\theta) \sec(\theta) \, d\theta = \int (\sec^2(\theta) - 1) \sec(\theta) \, d\theta = \int (\sec^3(\theta) - \sec(\theta)) \, d\theta ∫ tan 2 ( θ ) sec ( θ ) d θ = ∫ ( sec 2 ( θ ) − 1 ) sec ( θ ) d θ = ∫ ( sec 3 ( θ ) − sec ( θ )) d θ
Integrate : The integral can be split into two parts:
∫ sec 3 ( θ ) d θ − ∫ sec ( θ ) d θ \int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta ∫ sec 3 ( θ ) d θ − ∫ sec ( θ ) d θ
The integrals are:
∫ sec ( θ ) d θ = ln ∣ sec ( θ ) + tan ( θ ) ∣ + C 1 \int \sec(\theta) \, d\theta = \ln |\sec(\theta) + \tan(\theta)| + C_1 ∫ sec ( θ ) d θ = ln ∣ sec ( θ ) + tan ( θ ) ∣ + C 1
∫ sec 3 ( θ ) d θ = 1 2 sec ( θ ) tan ( θ ) + 1 2 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C 2 \int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C_2 ∫ sec 3 ( θ ) d θ = 2 1 sec ( θ ) tan ( θ ) + 2 1 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C 2
Combining these:
∫ sec 3 ( θ ) d θ − ∫ sec ( θ ) d θ = 1 2 sec ( θ ) tan ( θ ) + 1 2 ln ∣ sec ( θ ) + tan ( θ ) ∣ − ln ∣ sec ( θ ) + tan ( θ ) ∣ + C \int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| - \ln |\sec(\theta) + \tan(\theta)| + C ∫ sec 3 ( θ ) d θ − ∫ sec ( θ ) d θ = 2 1 sec ( θ ) tan ( θ ) + 2 1 ln ∣ sec ( θ ) + tan ( θ ) ∣ − ln ∣ sec ( θ ) + tan ( θ ) ∣ + C
= 1 2 sec ( θ ) tan ( θ ) − 1 2 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C = \frac{1}{2} \sec(\theta) \tan(\theta) - \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C = 2 1 sec ( θ ) tan ( θ ) − 2 1 ln ∣ sec ( θ ) + tan ( θ ) ∣ + C
Substitute Back : Recall that x = sec ( θ ) x = \sec(\theta) x = sec ( θ ) , so sec ( θ ) = x \sec(\theta) = x sec ( θ ) = x and tan ( θ ) = x 2 − 1 \tan(\theta) = \sqrt{x^2 - 1} tan ( θ ) = x 2 − 1 :
∫ x 2 − 1 d x = 1 2 x x 2 − 1 − 1 2 ln ∣ x + x 2 − 1 ∣ + C \int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln |x + \sqrt{x^2 - 1}| + C ∫ x 2 − 1 d x = 2 1 x x 2 − 1 − 2 1 ln ∣ x + x 2 − 1 ∣ + C
Therefore, the final result is:
∫ x 2 − 1 d x = 1 2 x x 2 − 1 − 1 2 ln ∣ x + x 2 − 1 ∣ + C \int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln |x + \sqrt{x^2 - 1}| + C ∫ x 2 − 1 d x = 2 1 x x 2 − 1 − 2 1 ln ∣ x + x 2 − 1 ∣ + C
Would you like more details or have any questions?
Here are some questions you might want to explore next:
How do you find the integral of e x sin ( x ) e^x \sin(x) e x sin ( x ) ?
What are the steps to solve a second-order differential equation?
How do you evaluate the limit of a function as x x x approaches infinity?
What is the series expansion for sin ( x ) \sin(x) sin ( x ) ?
How do you find the derivative of a product of two functions?
Tip: For integrals involving square roots of quadratic expressions, trigonometric substitutions are often very useful.