Math Problem Statement

∫(√(81 - x^2) / x) dx using the substitution x = 9 sin(θ).

Solution

Let's break down the given problem step by step:

Problem:

The goal is to find the indefinite integral of:

81x2xdx\int \frac{\sqrt{81 - x^2}}{x} \, dx

using the substitution x=9sin(θ)x = 9\sin(\theta).

Step-by-step solution:

  1. Substitute x=9sin(θ)x = 9\sin(\theta):

    • This is given as x=9sin(θ)x = 9\sin(\theta).
    • Differentiate this with respect to θ\theta: dx=9cos(θ)dθdx = 9\cos(\theta) \, d\theta
  2. Simplify 81x2\sqrt{81 - x^2}:

    • 81x2=8181sin2(θ)=81(1sin2(θ))=81cos2(θ)81 - x^2 = 81 - 81\sin^2(\theta) = 81(1 - \sin^2(\theta)) = 81\cos^2(\theta).
    • Therefore, 81x2=9cos(θ)\sqrt{81 - x^2} = 9\cos(\theta).
  3. Rewrite the integral:

    • Substituting everything into the original integral: 81x2xdx=9cos(θ)9sin(θ)9cos(θ)dθ\int \frac{\sqrt{81 - x^2}}{x} \, dx = \int \frac{9\cos(\theta)}{9\sin(\theta)} \cdot 9\cos(\theta) \, d\theta
    • Simplifying this: =cos(θ)sin(θ)9cos(θ)dθ=9cos2(θ)sin(θ)dθ= \int \frac{\cos(\theta)}{\sin(\theta)} \cdot 9 \cos(\theta) \, d\theta = 9 \int \frac{\cos^2(\theta)}{\sin(\theta)} \, d\theta
  4. Solve the integral:

    • Use the identity cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta) and split the integral: 9cos2(θ)sin(θ)dθ=91sin2(θ)sin(θ)dθ=9(1sin(θ)sin(θ))dθ9 \int \frac{\cos^2(\theta)}{\sin(\theta)} \, d\theta = 9 \int \frac{1 - \sin^2(\theta)}{\sin(\theta)} \, d\theta = 9 \int \left( \frac{1}{\sin(\theta)} - \sin(\theta) \right) \, d\theta
    • This simplifies to: 9(lnsin(θ)+cos(θ))+C9 \left( \ln|\sin(\theta)| + \cos(\theta) \right) + C
  5. Substitute back in terms of xx:

    • Since x=9sin(θ)x = 9\sin(\theta), we know that sin(θ)=x9\sin(\theta) = \frac{x}{9}, and cos(θ)=1sin2(θ)=1x281\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \frac{x^2}{81}}.
    • Substituting these back into the solution: 9(lnx9+1x281)+C9 \left( \ln\left|\frac{x}{9}\right| + \sqrt{1 - \frac{x^2}{81}} \right) + C

Thus, the final answer is:

9(lnx9+1x281)+C9 \left( \ln\left|\frac{x}{9}\right| + \sqrt{1 - \frac{x^2}{81}} \right) + C


Do you want more details on any specific step or have any questions?

Here are 5 related questions to deepen your understanding:

  1. How do trigonometric substitutions simplify integrals involving square roots?
  2. What other kinds of integrals can benefit from trigonometric substitution techniques?
  3. What is the general form of the integral of cos2(θ)sin(θ)\frac{\cos^2(\theta)}{\sin(\theta)}?
  4. How would the solution change if the bounds of integration were provided?
  5. Can you apply substitution if the integral contained x2x^2 instead of xx in the denominator?

Tip: Trigonometric substitution is especially useful when dealing with integrals involving a2x2\sqrt{a^2 - x^2}, x2a2\sqrt{x^2 - a^2}, or x2+a2\sqrt{x^2 + a^2}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Integration

Formulas

x = 9 sin(θ)
dx = 9 cos(θ) dθ
√(81 - x^2) = 9 cos(θ)

Theorems

Pythagorean identity: sin^2(θ) + cos^2(θ) = 1

Suitable Grade Level

Undergraduate Calculus