Math Problem Statement

find the integral of sqrt(x^2-9) /x^3 dx

Solution

To find the integral

x29x3dx\int \frac{\sqrt{x^2 - 9}}{x^3} \, dx

we'll proceed with a trigonometric substitution. Since we have a term of the form x29x^2 - 9 under the square root, let's use the substitution x=3secθx = 3 \sec \theta, which will simplify x29x^2 - 9 to a perfect square.

  1. Substitute x=3secθx = 3 \sec \theta:

    • Then dx=3secθtanθdθdx = 3 \sec \theta \tan \theta \, d\theta.
    • Substituting x=3secθx = 3 \sec \theta gives: x2=9sec2θx29=9sec2θ9=9(sec2θ1)=9tan2θ.x^2 = 9 \sec^2 \theta \Rightarrow x^2 - 9 = 9 \sec^2 \theta - 9 = 9 (\sec^2 \theta - 1) = 9 \tan^2 \theta.
    • Therefore, x29=3tanθ\sqrt{x^2 - 9} = 3 \tan \theta.
  2. Rewrite the integral in terms of θ\theta: Substituting into the integral, we get x29x3dx=3tanθ(3secθ)33secθtanθdθ.\int \frac{\sqrt{x^2 - 9}}{x^3} \, dx = \int \frac{3 \tan \theta}{(3 \sec \theta)^3} \cdot 3 \sec \theta \tan \theta \, d\theta.

  3. Simplify the expression: Simplifying each term: =3tanθ27sec3θ3secθtanθdθ.= \int \frac{3 \tan \theta}{27 \sec^3 \theta} \cdot 3 \sec \theta \tan \theta \, d\theta. =9tan2θ27sec2θdθ=tan2θ3sec2θdθ.= \int \frac{9 \tan^2 \theta}{27 \sec^2 \theta} \, d\theta = \int \frac{\tan^2 \theta}{3 \sec^2 \theta} \, d\theta. Now, since sec2θ=1+tan2θ\sec^2 \theta = 1 + \tan^2 \theta, rewrite sec2θ\sec^2 \theta as follows: =tan2θ3(1+tan2θ)dθ.= \int \frac{\tan^2 \theta}{3 (1 + \tan^2 \theta)} \, d\theta.

  4. Use the substitution u=tanθu = \tan \theta: Let u=tanθu = \tan \theta, then du=sec2θdθdu = \sec^2 \theta \, d\theta, and the integral becomes u23(1+u2)dusec2θ.\int \frac{u^2}{3 (1 + u^2)} \cdot \frac{du}{\sec^2 \theta}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Trigonometric Identities
Calculus

Formulas

Integral of sqrt(x^2 - a^2) / x^3 dx
Trigonometric identity: sec^2(θ) - 1 = tan^2(θ)
Substitution: x = 3 sec(θ), dx = 3 sec(θ) tan(θ) dθ

Theorems

Trigonometric Substitution
Pythagorean Identity

Suitable Grade Level

Undergraduate Calculus