Math Problem Statement

Consider the function f(x)=x2e4xf(x)=x2e4x.

f(x)f(x) has two inflection points at x = C and x = D with C < D where C is and D is

Finally for each of the following intervals, tell whether f(x)f(x) is concave up or concave down. (−∞,C)(-∞,C): Select an answer Concave Up Concave Down (C,D)(C,D): Select an answer Concave Up Concave Down (D,∞)(D,∞) Select an answer Concave Up Concave Down

Solution

To find the inflection points of the function f(x)=x2e4xf(x) = x^2 e^{4x}, we need to determine the second derivative and analyze its sign.

  1. First derivative: f(x)=2xe4x+x24e4x=e4x(2x+4x2)f'(x) = 2x e^{4x} + x^2 \cdot 4 e^{4x} = e^{4x} (2x + 4x^2)

  2. Second derivative: Using the product rule: f(x)=ddx(e4x(2x+4x2))=e4x(2+8x)+4e4x(2x+4x2)f''(x) = \frac{d}{dx}(e^{4x}(2x + 4x^2)) = e^{4x}(2 + 8x) + 4e^{4x}(2x + 4x^2) This simplifies to: f(x)=e4x(2+8x+8x+16x2)=e4x(16x2+16x+2)f''(x) = e^{4x}(2 + 8x + 8x + 16x^2) = e^{4x}(16x^2 + 16x + 2) Setting f(x)=0f''(x) = 0: 16x2+16x+2=016x^2 + 16x + 2 = 0 Dividing by 2: 8x2+8x+1=08x^2 + 8x + 1 = 0 Using the quadratic formula: x=8±8248128=8±643216=8±3216=8±4216=2±24x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} = \frac{-8 \pm \sqrt{64 - 32}}{16} = \frac{-8 \pm \sqrt{32}}{16} = \frac{-8 \pm 4\sqrt{2}}{16} = \frac{-2 \pm \sqrt{2}}{4}

    Therefore, the inflection points are: C=224,D=2+24C = \frac{-2 - \sqrt{2}}{4}, \quad D = \frac{-2 + \sqrt{2}}{4}

  3. Concavity:

    • For (,C)(-\infty, C): Choose a test point (e.g., x=1x = -1): f(1)=e4(16(1)2+16(1)+2)=e4(1616+2)=2>0(Concave Up)f''(-1) = e^{-4}(16(-1)^2 + 16(-1) + 2) = e^{-4}(16 - 16 + 2) = 2 > 0 \quad \text{(Concave Up)}
    • For (C,D)(C, D): Choose a test point (e.g., x=0x = 0): f(0)=e0(16(0)2+16(0)+2)=2>0(Concave Up)f''(0) = e^{0}(16(0)^2 + 16(0) + 2) = 2 > 0 \quad \text{(Concave Up)}
    • For (D,)(D, \infty): Choose a test point (e.g., x=1x = 1): f(1)=e4(16(1)2+16(1)+2)=e4(16+16+2)=34e4>0(Concave Up)f''(1) = e^{4}(16(1)^2 + 16(1) + 2) = e^{4}(16 + 16 + 2) = 34e^{4} > 0 \quad \text{(Concave Up)}

Summary:

  • Inflection points:

    • C=224C = \frac{-2 - \sqrt{2}}{4}
    • D=2+24D = \frac{-2 + \sqrt{2}}{4}
  • Concavity:

    • (,C)(-\infty, C): Concave Up
    • (C,D)(C, D): Concave Up
    • (D,)(D, \infty): Concave Up

Do you need further details or have any questions? Here are some related questions:

  1. How do you interpret inflection points in a graph?
  2. What does concavity imply about the behavior of a function?
  3. How would the concavity change if the function were modified?
  4. Can you provide an example of a function with different concavity?
  5. What role does the exponential function play in this context?

Tip: Always verify the sign of the second derivative when determining concavity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Inflection Points
Concavity
Exponential Functions

Formulas

First derivative: f'(x) = e^{4x} (2x + 4x^2)
Second derivative: f''(x) = e^{4x} (16x^2 + 16x + 2)
Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a

Theorems

Inflection point determination by the second derivative

Suitable Grade Level

Grades 11-12