Math Problem Statement

Consider the function f(x)=x2e4xf(x)=x2e4x.

f(x)f(x) has two inflection points at x = C and x = D with C < D where C is and D is

Finally for each of the following intervals, tell whether f(x)f(x) is concave up or concave down. (−∞,C)(-∞,C): Select an answer Concave Up Concave Down (C,D)(C,D): Select an answer Concave Up Concave Down (D,∞)(D,∞) Select an answer Concave Up Concave Down

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Inflection Points
Concavity
Exponential Functions

Formulas

First derivative: f'(x) = e^{4x} (2x + 4x^2)
Second derivative: f''(x) = e^{4x} (16x^2 + 16x + 2)
Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a

Theorems

Inflection point determination by the second derivative

Suitable Grade Level

Grades 11-12