Math Problem Statement

Find the indefinite integral by using the substitution x = 3 sec(θ), \( \int \frac{\sqrt{x^2 - 9}}{x} \, dx \).

Solution

We are given the following integral and substitution:

x29xdx\int \frac{\sqrt{x^2 - 9}}{x} \, dx

with the substitution x=3sec(θ)x = 3 \sec(\theta).

Step-by-Step Solution:

  1. Substitute x=3sec(θ)x = 3 \sec(\theta):

    dx=3sec(θ)tan(θ)dθdx = 3 \sec(\theta) \tan(\theta) \, d\theta Also, we need to compute x29\sqrt{x^2 - 9}:

    x2=9sec2(θ)x^2 = 9 \sec^2(\theta) x29=9(sec2(θ)1)=9tan2(θ)x^2 - 9 = 9 (\sec^2(\theta) - 1) = 9 \tan^2(\theta) Therefore:

    x29=3tan(θ)\sqrt{x^2 - 9} = 3 \tan(\theta)

  2. Substitute into the integral:

    Now, the integral becomes:

    3tan(θ)3sec(θ)3sec(θ)tan(θ)dθ\int \frac{3 \tan(\theta)}{3 \sec(\theta)} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta Simplify the expression:

    tan2(θ)3dθ\int \tan^2(\theta) \cdot 3 \, d\theta

  3. Simplify and integrate:

    Recall the identity:

    tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1 So, the integral becomes:

    3(sec2(θ)1)dθ3 \int (\sec^2(\theta) - 1) \, d\theta This simplifies to:

    3(sec2(θ)dθ1dθ)3 \left( \int \sec^2(\theta) \, d\theta - \int 1 \, d\theta \right)

    The integrals of sec2(θ)\sec^2(\theta) and 1 are:

    sec2(θ)dθ=tan(θ),1dθ=θ\int \sec^2(\theta) \, d\theta = \tan(\theta), \quad \int 1 \, d\theta = \theta

    Therefore, the integral becomes:

    3(tan(θ)θ)+C3 (\tan(\theta) - \theta) + C

  4. Return to xx-terms:

    From the substitution x=3sec(θ)x = 3 \sec(\theta), we know that:

    sec(θ)=x3,tan(θ)=sec2(θ)1=x291=x293\sec(\theta) = \frac{x}{3}, \quad \tan(\theta) = \sqrt{\sec^2(\theta) - 1} = \sqrt{\frac{x^2}{9} - 1} = \frac{\sqrt{x^2 - 9}}{3}

    Also:

    θ=sec1(x3)\theta = \sec^{-1}\left(\frac{x}{3}\right)

    Thus, the solution in terms of xx is:

    x29xdx=x293sec1(x3)+C\int \frac{\sqrt{x^2 - 9}}{x} \, dx = \sqrt{x^2 - 9} - 3 \sec^{-1}\left(\frac{x}{3}\right) + C

This is the final result.


Do you have any questions or would you like further details on any steps?

Related Questions:

  1. How does trigonometric substitution help in evaluating integrals?
  2. What is the general strategy for solving integrals involving square roots of quadratic expressions?
  3. Can you explain the derivation of the identity sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta)?
  4. How do you handle integrals involving sec(θ)\sec(\theta) and tan(θ)\tan(\theta)?
  5. How would the solution change if the integral involved x2+9x^2 + 9 instead of x29x^2 - 9?

Tip:

When dealing with integrals that involve square roots of quadratic expressions, trigonometric substitutions are often the most effective approach to simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric substitution
Calculus
Integration techniques

Formulas

Substitution: x = 3 sec(θ)
Pythagorean identity: sec^2(θ) - 1 = tan^2(θ)
Integral of sec^2(θ): ∫ sec^2(θ) dθ = tan(θ)
Derivative of sec(θ): d/dθ [sec(θ)] = sec(θ)tan(θ)

Theorems

Pythagorean trigonometric identities
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus