Math Problem Statement

Which point would not be a solution to the system of linear inequalities shown below?

y, is less than, 2, x, plus, 2, y, is less than or equal to, minus, start fraction, 5, divided by, 2, end fraction, x, minus, 5

y<2x+2y≤−25​x−5

Answer

Multiple Choice Answers

left parenthesis, minus, 4, comma, minus, 8, right parenthesis(−4,−8)

left parenthesis, minus, 8, comma, minus, 1, right parenthesis(−8,−1)

left parenthesis, minus, 2, comma, minus, 4, right parenthesis(−2,−4)

left parenthesis, minus, 2, comma, minus, 8, right parenthesis(−2,−8)

Solution

To find which point is not a solution to the given system of linear inequalities:

  1. y<2x+2y < 2x + 2
  2. y52x5y \leq -\frac{5}{2}x - 5

We need to check each provided point to see if they satisfy both inequalities.

Point (-4, -8)

  1. For y<2x+2y < 2x + 2: 8<2(4)+2-8 < 2(-4) + 2 8<8+2-8 < -8 + 2 8<6(True)-8 < -6 \quad (\text{True})

  2. For y52x5y \leq -\frac{5}{2}x - 5: 852(4)5-8 \leq -\frac{5}{2}(-4) - 5 8105-8 \leq 10 - 5 85(True)-8 \leq 5 \quad (\text{True})

Point (-8, -1)

  1. For y<2x+2y < 2x + 2: 1<2(8)+2-1 < 2(-8) + 2 1<16+2-1 < -16 + 2 1<14(False)-1 < -14 \quad (\text{False})

  2. For y52x5y \leq -\frac{5}{2}x - 5: 152(8)5-1 \leq -\frac{5}{2}(-8) - 5 1205-1 \leq 20 - 5 115(True)-1 \leq 15 \quad (\text{True})

Point (-2, -4)

  1. For y<2x+2y < 2x + 2: 4<2(2)+2-4 < 2(-2) + 2 4<4+2-4 < -4 + 2 4<2(True)-4 < -2 \quad (\text{True})

  2. For y52x5y \leq -\frac{5}{2}x - 5: 452(2)5-4 \leq -\frac{5}{2}(-2) - 5 455-4 \leq 5 - 5 40(True)-4 \leq 0 \quad (\text{True})

Point (-2, -8)

  1. For y<2x+2y < 2x + 2: 8<2(2)+2-8 < 2(-2) + 2 8<4+2-8 < -4 + 2 8<2(True)-8 < -2 \quad (\text{True})

  2. For y52x5y \leq -\frac{5}{2}x - 5: 852(2)5-8 \leq -\frac{5}{2}(-2) - 5 855-8 \leq 5 - 5 80(True)-8 \leq 0 \quad (\text{True})

Conclusion

The point (8,1)(-8, -1) does not satisfy the first inequality y<2x+2y < 2x + 2 and therefore is not a solution to the system of inequalities.