Math Problem Statement

Suppose f ( x )

− x 2 − 10 x + 9 f ( x )

x 2

10 x + 9 . Compute the following:

A.) f ( − 1 ) + f ( 2 )

f (

1 ) + f ( 2 )

B.) f ( − 1 ) − f ( 2 )

f (

1 )

f ( 2 )

Solution

Given the function f(x)=x210x+9f(x) = -x^2 - 10x + 9, we will compute the values for f(1)f(-1) and f(2)f(2) to answer both parts A and B.

Part A: f(1)+f(2)f(-1) + f(2)

First, calculate f(1)f(-1): f(1)=(1)210(1)+9=1+10+9=18f(-1) = -(-1)^2 - 10(-1) + 9 = -1 + 10 + 9 = 18

Next, calculate f(2)f(2): f(2)=(2)210(2)+9=420+9=15f(2) = -(2)^2 - 10(2) + 9 = -4 - 20 + 9 = -15

Now, compute f(1)+f(2)f(-1) + f(2): f(1)+f(2)=18+(15)=3f(-1) + f(2) = 18 + (-15) = 3

Part B: f(1)f(2)f(-1) - f(2)

We already know that f(1)=18f(-1) = 18 and f(2)=15f(2) = -15.

Now, compute f(1)f(2)f(-1) - f(2): f(1)f(2)=18(15)=18+15=33f(-1) - f(2) = 18 - (-15) = 18 + 15 = 33

Final Answers:

  • A) f(1)+f(2)=3f(-1) + f(2) = 3
  • B) f(1)f(2)=33f(-1) - f(2) = 33

Do you want more details on the calculations or have any questions?


Here are 5 related questions:

  1. How would you find the vertex of the function f(x)=x210x+9f(x) = -x^2 - 10x + 9?
  2. What are the roots of the function f(x)=0f(x) = 0?
  3. Can you rewrite f(x)f(x) in vertex form?
  4. What is the maximum or minimum value of the function f(x)f(x)?
  5. How does the sign of the leading coefficient affect the shape of the parabola?

Tip: For quadratic functions, the discriminant b24acb^2 - 4ac determines the number of real roots.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Function Evaluation

Formulas

f(x) = ax^2 + bx + c
f(a) = -a^2 - 10a + 9

Theorems

Quadratic function evaluation

Suitable Grade Level

Grades 9-11