Math Problem Statement

Find left parenthesis f circle g right parenthesis left parenthesis x right parenthesis and left parenthesis g circle f right parenthesis left parenthesis x right parenthesis. ​f(x)equals3 x squared plus 5​, ​ g(x)equalsnegative 3 x

Solution

We are tasked with finding (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x), where f(x)=3x2+5f(x) = 3x^2 + 5 and g(x)=3xg(x) = -3x.

1. Finding (fg)(x)(f \circ g)(x):

The composition (fg)(x)(f \circ g)(x) means f(g(x))f(g(x)). Substituting g(x)=3xg(x) = -3x into f(x)f(x):

f(g(x))=f(3x)=3(3x)2+5f(g(x)) = f(-3x) = 3(-3x)^2 + 5

Simplify:

(3x)2=9x2so3(3x)2=39x2=27x2(-3x)^2 = 9x^2 \quad \text{so} \quad 3(-3x)^2 = 3 \cdot 9x^2 = 27x^2

f(3x)=27x2+5f(-3x) = 27x^2 + 5

Thus:

(fg)(x)=27x2+5(f \circ g)(x) = 27x^2 + 5


2. Finding (gf)(x)(g \circ f)(x):

The composition (gf)(x)(g \circ f)(x) means g(f(x))g(f(x)). Substituting f(x)=3x2+5f(x) = 3x^2 + 5 into g(x)g(x):

g(f(x))=g(3x2+5)=3(3x2+5)g(f(x)) = g(3x^2 + 5) = -3(3x^2 + 5)

Simplify:

3(3x2+5)=9x215-3(3x^2 + 5) = -9x^2 - 15

Thus:

(gf)(x)=9x215(g \circ f)(x) = -9x^2 - 15


Final Answer:

(fg)(x)=27x2+5(f \circ g)(x) = 27x^2 + 5 (gf)(x)=9x215(g \circ f)(x) = -9x^2 - 15

Would you like a detailed breakdown of any steps or additional examples?

Related Questions:

  1. How do you verify the results of function compositions?
  2. What are the domain restrictions of (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x)?
  3. How does the order of composition affect the result?
  4. Can you apply these compositions to specific values of xx?
  5. What happens when both f(x)f(x) and g(x)g(x) are linear functions?

Tip:

Always simplify expressions inside parentheses before applying the outer function in compositions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Polynomial Functions
Simplification

Formulas

(f ∘ g)(x) = f(g(x))
(g ∘ f)(x) = g(f(x))
a² = (base)^2 for polynomial terms

Theorems

Function Composition Definition

Suitable Grade Level

Grades 9-12