Math Problem Statement

Given the functions f(x) = 2x + 1 and g(x) = 3x^2 + 5x - 2, find (f ∘ g)(x).

Solution

To find (fg)(x)(f \circ g)(x), we need to substitute g(x)g(x) into f(x)f(x).

Given:

  • f(x)=2x+1f(x) = 2x + 1
  • g(x)=3x2+5x2g(x) = 3x^2 + 5x - 2

First, substitute g(x)g(x) into f(x)f(x):

f(g(x))=f(3x2+5x2)f(g(x)) = f(3x^2 + 5x - 2)

Replace xx in f(x)f(x) with 3x2+5x23x^2 + 5x - 2:

f(g(x))=2(3x2+5x2)+1f(g(x)) = 2(3x^2 + 5x - 2) + 1

Simplify:

=6x2+10x4+1= 6x^2 + 10x - 4 + 1

=6x2+10x3= 6x^2 + 10x - 3

So, (fg)(x)=6x2+10x3(f \circ g)(x) = 6x^2 + 10x - 3.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function composition
Polynomial functions
Substitution

Formulas

f(g(x)) = f(3x^2 + 5x - 2) = 2(3x^2 + 5x - 2) + 1

Theorems

Basic properties of functions and function composition

Suitable Grade Level

Grades 9-11