Math Problem Statement

Diketahui vektor a = 3i - 6j + xk dan b = 2i - 6j. Jika |a| = 9, tentukan: a. Nilai x, b. Nilai |2a - b|

Solution

Let's break down the problem step-by-step.

Given:

  1. Vector a\vec{a}: a=3i^6j^+xk^\vec{a} = 3\hat{i} - 6\hat{j} + x\hat{k}
  2. Vector b\vec{b}: b=2i^6j^\vec{b} = 2\hat{i} - 6\hat{j}
  3. Magnitude of a\vec{a}: a=9|\vec{a}| = 9

To Find:

  1. Value of xx.
  2. Magnitude of 2ab|2\vec{a} - \vec{b}|.

Part (a): Finding xx

The magnitude of vector a\vec{a} is given by: a=(3)2+(6)2+(x)2|\vec{a}| = \sqrt{(3)^2 + (-6)^2 + (x)^2}

Given that a=9|\vec{a}| = 9, we can set up the equation: 9=32+(6)2+x29 = \sqrt{3^2 + (-6)^2 + x^2}

Simplifying inside the square root: 9=9+36+x29 = \sqrt{9 + 36 + x^2} 9=45+x29 = \sqrt{45 + x^2}

Square both sides to remove the square root: 81=45+x281 = 45 + x^2

Isolate x2x^2: 8145=x281 - 45 = x^2 36=x236 = x^2

Take the square root of both sides: x=±6x = \pm 6

Part (b): Finding 2ab|2\vec{a} - \vec{b}|

First, compute 2a2\vec{a}: 2a=2(3i^6j^+xk^)=6i^12j^+2xk^2\vec{a} = 2(3\hat{i} - 6\hat{j} + x\hat{k}) = 6\hat{i} - 12\hat{j} + 2x\hat{k}

Now compute 2ab2\vec{a} - \vec{b}: 2ab=(6i^12j^+2xk^)(2i^6j^)2\vec{a} - \vec{b} = (6\hat{i} - 12\hat{j} + 2x\hat{k}) - (2\hat{i} - 6\hat{j})

Combine like terms: 2ab=(62)i^+(12+6)j^+2xk^2\vec{a} - \vec{b} = (6 - 2)\hat{i} + (-12 + 6)\hat{j} + 2x\hat{k} 2ab=4i^6j^+2xk^2\vec{a} - \vec{b} = 4\hat{i} - 6\hat{j} + 2x\hat{k}

The magnitude of this vector is: 2ab=(4)2+(6)2+(2x)2|2\vec{a} - \vec{b}| = \sqrt{(4)^2 + (-6)^2 + (2x)^2}

Substitute x=±6x = \pm 6: 2ab=16+36+(2×6)2|2\vec{a} - \vec{b}| = \sqrt{16 + 36 + (2 \times 6)^2} 2ab=16+36+144|2\vec{a} - \vec{b}| = \sqrt{16 + 36 + 144} 2ab=196|2\vec{a} - \vec{b}| = \sqrt{196} 2ab=14|2\vec{a} - \vec{b}| = 14

So, the answers are:

  1. Value of xx: x=±6x = \pm 6
  2. Magnitude of 2ab|2\vec{a} - \vec{b}|: 14

Would you like any additional details or further explanation?

5 Related Questions:

  1. How do you find the magnitude of a vector in 3D space?
  2. What is the geometric interpretation of the dot product of two vectors?
  3. How can you determine if two vectors are orthogonal?
  4. What is the difference between a vector's magnitude and direction?
  5. How do you perform scalar multiplication on a vector?

Tip:

When working with vectors, always break them down into their components and use vector operations systematically for clarity and accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Magnitude of Vectors
3D Vectors

Formulas

Magnitude of a vector: |a| = sqrt(x^2 + y^2 + z^2)
Vector subtraction: 2a - b
Magnitude of the result vector: |v| = sqrt(vx^2 + vy^2 + vz^2)

Theorems

Pythagorean Theorem in 3D space

Suitable Grade Level

Grades 10-12