Math Problem Statement

Use identities to find the exact value of each of the four remaining trigonometric functions of the acute angle

thetaθ.

sine theta equals four sevenths comma cosine theta equals StartFraction StartRoot 33 EndRoot Over 7 EndFractionsinθ=47,  cosθ=337

Solution

Given the values of sinθ\sin \theta and cosθ\cos \theta for the acute angle θ\theta:

sinθ=47,cosθ=337\sin \theta = \frac{4}{7}, \quad \cos \theta = \frac{\sqrt{33}}{7}

we need to find the exact values of the four remaining trigonometric functions: tanθ\tan \theta, cotθ\cot \theta, secθ\sec \theta, and cscθ\csc \theta.

Step-by-Step Solution

  1. Tangent (tanθ\tan \theta):

    tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} Substituting the given values: tanθ=47337=433\tan \theta = \frac{\frac{4}{7}}{\frac{\sqrt{33}}{7}} = \frac{4}{\sqrt{33}}

  2. Cotangent (cotθ\cot \theta):

    cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta} Substituting the given values: cotθ=33747=334\cot \theta = \frac{\frac{\sqrt{33}}{7}}{\frac{4}{7}} = \frac{\sqrt{33}}{4}

  3. Secant (secθ\sec \theta):

    secθ=1cosθ\sec \theta = \frac{1}{\cos \theta} Substituting the value of cosθ\cos \theta: secθ=1337=733\sec \theta = \frac{1}{\frac{\sqrt{33}}{7}} = \frac{7}{\sqrt{33}}

    To rationalize the denominator: secθ=733×3333=73333\sec \theta = \frac{7}{\sqrt{33}} \times \frac{\sqrt{33}}{\sqrt{33}} = \frac{7\sqrt{33}}{33}

  4. Cosecant (cscθ\csc \theta):

    cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta} Substituting the value of sinθ\sin \theta: cscθ=147=74\csc \theta = \frac{1}{\frac{4}{7}} = \frac{7}{4}

Summary of Results

  • sinθ=47\sin \theta = \frac{4}{7}
  • cosθ=337\cos \theta = \frac{\sqrt{33}}{7}
  • tanθ=433\tan \theta = \frac{4}{\sqrt{33}}
  • cotθ=334\cot \theta = \frac{\sqrt{33}}{4}
  • secθ=73333\sec \theta = \frac{7\sqrt{33}}{33}
  • cscθ=74\csc \theta = \frac{7}{4}

Would you like to see more details on any of these steps, or do you have any questions?

Follow-up Questions:

  1. Would you like to learn more about the process of rationalizing denominators?
  2. Are you interested in how these trigonometric identities relate to the unit circle?
  3. Do you want to understand how to use these identities to solve other types of problems?
  4. Would you like examples of other trigonometric functions given different values?
  5. Do you need a refresher on the Pythagorean identity involving sin\sin and cos\cos?

Tip:

When working with trigonometric functions, always remember that the square of sinθ\sin \theta plus the square of cosθ\cos \theta is equal to 1 for any angle θ\theta. This is a useful identity for checking your work: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

Trigonometric functions

Theorems

-

Suitable Grade Level

High School