Math Problem Statement

Given that

sine thetasinθequals=StartFraction 3 Over StartRoot 14 EndRoot EndFraction314

and

cosine thetacosθequals=StartFraction StartRoot 5 EndRoot Over StartRoot 14 EndRoot EndFraction514

find the values of the remaining four trigonometric functions using identities.

Solution

Given: sinθ=314\sin \theta = \frac{3}{\sqrt{14}} cosθ=514\cos \theta = \frac{\sqrt{5}}{\sqrt{14}}

We need to find the values of the remaining four trigonometric functions: tanθ\tan \theta, cotθ\cot \theta, secθ\sec \theta, and cscθ\csc \theta.

Step 1: Find tanθ\tan \theta

tanθ=sinθcosθ=314514=35=355\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{\sqrt{14}}}{\frac{\sqrt{5}}{\sqrt{14}}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}

Step 2: Find cotθ\cot \theta

cotθ=1tanθ=1355=535=53\cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{3\sqrt{5}}{5}} = \frac{5}{3\sqrt{5}} = \frac{\sqrt{5}}{3}

Step 3: Find secθ\sec \theta

secθ=1cosθ=1514=145=145\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{5}}{\sqrt{14}}} = \frac{\sqrt{14}}{\sqrt{5}} = \sqrt{\frac{14}{5}}

Step 4: Find cscθ\csc \theta

cscθ=1sinθ=1314=143\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{3}{\sqrt{14}}} = \frac{\sqrt{14}}{3}

Summary of all six trigonometric functions:

sinθ=314\sin \theta = \frac{3}{\sqrt{14}} cosθ=514\cos \theta = \frac{\sqrt{5}}{\sqrt{14}} tanθ=355\tan \theta = \frac{3\sqrt{5}}{5} cotθ=53\cot \theta = \frac{\sqrt{5}}{3} secθ=145\sec \theta = \sqrt{\frac{14}{5}} cscθ=143\csc \theta = \frac{\sqrt{14}}{3}

Do you want details or have any questions?

Related Questions

  1. How do you rationalize the denominator of a trigonometric function?
  2. What are the relationships between the primary and reciprocal trigonometric functions?
  3. Can you derive tanθ\tan \theta from sinθ\sin \theta and cosθ\cos \theta?
  4. Why is it important to know all six trigonometric functions?
  5. How can you verify these trigonometric values using a calculator?
  6. What is the significance of the Pythagorean identity in solving trigonometric problems?
  7. How are trigonometric functions applied in solving real-world problems?
  8. Can you demonstrate solving a right triangle problem using these trigonometric functions?

Tip

When working with trigonometric functions, always ensure to simplify your expressions and rationalize the denominators for a more standard form of the answers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

Trigonometric identities

Theorems

-

Suitable Grade Level

High School