Math Problem Statement

Find the value of each of the six trigonometric functions of the angle theta in the figure. theta 24 12

Solution

To find the values of the six trigonometric functions of the angle θ\theta in this right triangle, we can use the side lengths provided. The triangle has one leg measuring 1212 and the other leg measuring 2424.

Step 1: Calculate the Hypotenuse

Using the Pythagorean theorem: c=a2+b2=122+242c = \sqrt{a^2 + b^2} = \sqrt{12^2 + 24^2} =144+576=720=125= \sqrt{144 + 576} = \sqrt{720} = 12\sqrt{5}

So, the hypotenuse cc is 12512\sqrt{5}.

Step 2: Trigonometric Functions

Now, we can find each trigonometric function based on the angle θ\theta:

  1. Sine sin(θ)\sin(\theta): sin(θ)=oppositehypotenuse=24125=25=255\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{24}{12\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}

  2. Cosine cos(θ)\cos(\theta): cos(θ)=adjacenthypotenuse=12125=15=55\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{12}{12\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}

  3. Tangent tan(θ)\tan(\theta): tan(θ)=oppositeadjacent=2412=2\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{24}{12} = 2

  4. Cosecant csc(θ)\csc(\theta) (reciprocal of sine): csc(θ)=hypotenuseopposite=12524=52\csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{12\sqrt{5}}{24} = \frac{\sqrt{5}}{2}

  5. Secant sec(θ)\sec(\theta) (reciprocal of cosine): sec(θ)=hypotenuseadjacent=12512=5\sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{12\sqrt{5}}{12} = \sqrt{5}

  6. Cotangent cot(θ)\cot(\theta) (reciprocal of tangent): cot(θ)=adjacentopposite=1224=12\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{12}{24} = \frac{1}{2}

Summary of Trigonometric Function Values:

  • sin(θ)=255\sin(\theta) = \frac{2\sqrt{5}}{5}
  • cos(θ)=55\cos(\theta) = \frac{\sqrt{5}}{5}
  • tan(θ)=2\tan(\theta) = 2
  • csc(θ)=52\csc(\theta) = \frac{\sqrt{5}}{2}
  • sec(θ)=5\sec(\theta) = \sqrt{5}
  • cot(θ)=12\cot(\theta) = \frac{1}{2}

Would you like more details on any of these steps?


  1. How can we verify the trigonometric values using a calculator?
  2. How do these trigonometric functions relate to real-world applications?
  3. What is the significance of each trigonometric function in a right triangle?
  4. How would these values change if the triangle's dimensions were scaled?
  5. Can we use these trigonometric values to find angle θ\theta directly?

Tip: Always remember that each trigonometric function has a reciprocal pair that can help in calculations when values are known for only sine, cosine, or tangent.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangle
Pythagorean Theorem
Trigonometric Functions

Formulas

Pythagorean Theorem: c = √(a² + b²)
Sine: sin(θ) = opposite/hypotenuse
Cosine: cos(θ) = adjacent/hypotenuse
Tangent: tan(θ) = opposite/adjacent
Cosecant: csc(θ) = 1/sin(θ)
Secant: sec(θ) = 1/cos(θ)
Cotangent: cot(θ) = 1/tan(θ)

Theorems

Pythagorean Theorem
Trigonometric Ratios in Right Triangles

Suitable Grade Level

Grades 9-12