Math Problem Statement

найти производную второго порядка функции

Найти производную второго порядка от функции, заданной параметрически. Исходные данные: x = e^t (sin t + cos t), y = e^t (cos t - sin t)

Solution

To solve the problem of finding the second derivative d2ydx2\frac{d^2y}{dx^2} for the given parametric equations:

x=et(sint+cost),y=et(costsint),x = e^t (\sin t + \cos t), \quad y = e^t (\cos t - \sin t),

we will proceed as follows:


1. First Derivative (dydx\frac{dy}{dx}):

Using the chain rule for parametric equations: dydx=dydtdxdt.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.

  • Differentiate x(t)x(t) with respect to tt: dxdt=et(costsint)+et(sint+cost)=2etcost.\frac{dx}{dt} = e^t (\cos t - \sin t) + e^t (\sin t + \cos t) = 2e^t \cos t.

  • Differentiate y(t)y(t) with respect to tt: dydt=et(sintcost)+et(costsint)=2etsint.\frac{dy}{dt} = e^t (-\sin t - \cos t) + e^t (\cos t - \sin t) = -2e^t \sin t.

Thus: dydx=2etsint2etcost=tant.\frac{dy}{dx} = \frac{-2e^t \sin t}{2e^t \cos t} = -\tan t.


2. Second Derivative (d2ydx2\frac{d^2y}{dx^2}):

To find the second derivative, use the formula: d2ydx2=ddt(dydx)÷dxdt.\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \div \frac{dx}{dt}.

  • Differentiate dydx=tant\frac{dy}{dx} = -\tan t with respect to tt: ddt(tant)=sec2t.\frac{d}{dt}(-\tan t) = -\sec^2 t.

  • Recall dxdt=2etcost\frac{dx}{dt} = 2e^t \cos t.

Thus: d2ydx2=sec2t2etcost.\frac{d^2y}{dx^2} = \frac{-\sec^2 t}{2e^t \cos t}.

Simplify using sec2t=1cos2t\sec^2 t = \frac{1}{\cos^2 t}: d2ydx2=12etcos3t.\frac{d^2y}{dx^2} = \frac{-1}{2e^t \cos^3 t}.


Final Answer:

d2ydx2=12etcos3t.\frac{d^2y}{dx^2} = \frac{-1}{2e^t \cos^3 t}.

Would you like further clarification or additional steps? Here are five related questions for deeper exploration:

  1. How do parametric equations relate to the curvature of a curve?
  2. Can you demonstrate the physical interpretation of the second derivative in this context?
  3. What happens if we analyze d2ydx2\frac{d^2y}{dx^2} for different values of tt?
  4. Could this process apply to polar coordinates for similar parametric forms?
  5. How do we use this second derivative to find inflection points of the curve?

Tip:

When working with parametric equations, always check if simplifying trigonometric expressions can reduce the complexity of derivatives.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Parametric Equations
Derivatives

Formulas

First derivative for parametric equations: dy/dx = (dy/dt) / (dx/dt)
Second derivative for parametric equations: d²y/dx² = (d/dt(dy/dx)) / (dx/dt)

Theorems

Chain Rule

Suitable Grade Level

University-level Calculus or Advanced High School