Math Problem Statement

Determine the second derivative \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = \arccos(e^t)\) and \(y = \arcsin(e^{2t})\).

Solution

To solve this problem, we are tasked with finding d2ydx2\frac{d^2y}{dx^2}, given the parametric equations:

x=arccos(et)x = \arccos(e^t) y=arcsin(e2t).y = \arcsin(e^{2t}).

Step 1: Find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}

The derivatives of the given functions with respect to tt are:

  1. For x=arccos(et)x = \arccos(e^t): dxdt=11(et)2et=et1e2t.\frac{dx}{dt} = \frac{-1}{\sqrt{1 - (e^t)^2}} \cdot e^t = \frac{-e^t}{\sqrt{1 - e^{2t}}}.

  2. For y=arcsin(e2t)y = \arcsin(e^{2t}): dydt=11(e2t)22e2t=2e2t1e4t.\frac{dy}{dt} = \frac{1}{\sqrt{1 - (e^{2t})^2}} \cdot 2e^{2t} = \frac{2e^{2t}}{\sqrt{1 - e^{4t}}}.

Step 2: Find dydx\frac{dy}{dx}

Using the chain rule, dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, we substitute:

dydx=2e2t1e4tet1e2t.\frac{dy}{dx} = \frac{\frac{2e^{2t}}{\sqrt{1 - e^{4t}}}}{\frac{-e^t}{\sqrt{1 - e^{2t}}}}.

Simplify: dydx=2e2t1e2tet1e4t.\frac{dy}{dx} = \frac{2e^{2t} \cdot \sqrt{1 - e^{2t}}}{-e^t \cdot \sqrt{1 - e^{4t}}}.

Combine terms: dydx=2e2t1e2tet(1e2t)(1+e2t).\frac{dy}{dx} = \frac{-2e^{2t} \sqrt{1 - e^{2t}}}{e^t \sqrt{(1 - e^{2t})(1 + e^{2t})}}.

Simplify further: dydx=2e2tet1+e2t.\frac{dy}{dx} = \frac{-2e^{2t}}{e^t \sqrt{1 + e^{2t}}}.

Finally: dydx=2et1+e2t.\frac{dy}{dx} = \frac{-2e^t}{\sqrt{1 + e^{2t}}}.

Step 3: Find d2ydx2\frac{d^2y}{dx^2}

To compute d2ydx2\frac{d^2y}{dx^2}, we use the formula: d2ydx2=ddx(dydx)=ddt(dydx)dxdt.\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}.

  1. Differentiate dydx=2et1+e2t\frac{dy}{dx} = \frac{-2e^t}{\sqrt{1 + e^{2t}}} with respect to tt: ddt(dydx)=ddt(2et(1+e2t)1/2).\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(-2e^t (1 + e^{2t})^{-1/2} \right).

    Using the product rule and chain rule: ddt(dydx)=2et12(1+e2t)3/22e2t+(2)et.\frac{d}{dt}\left(\frac{dy}{dx}\right) = -2e^t \cdot \frac{-1}{2}(1 + e^{2t})^{-3/2} \cdot 2e^{2t} + (-2)e^t.

    Simplify: ddt(dydx)=2ete2t(1+e2t)3/22et.\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{2e^t \cdot e^{2t}}{(1 + e^{2t})^{3/2}} - 2e^t.

  2. Divide by dxdt=et1e2t\frac{dx}{dt} = \frac{-e^t}{\sqrt{1 - e^{2t}}}: d2ydx2=2ete2t(1+e2t)3/22etet1e2t.\frac{d^2y}{dx^2} = \frac{\frac{2e^t \cdot e^{2t}}{(1 + e^{2t})^{3/2}} - 2e^t}{\frac{-e^t}{\sqrt{1 - e^{2t}}}}.

    Simplify: d2ydx2=1e2t(2ete2t(1+e2t)3/22et)et.\frac{d^2y}{dx^2} = \frac{\sqrt{1 - e^{2t}} \left(\frac{2e^t \cdot e^{2t}}{(1 + e^{2t})^{3/2}} - 2e^t\right)}{-e^t}.

    Simplify further as needed for exact expressions.

Would you like to proceed with further simplifications or detailed explanations?

Related Questions:

  1. What are some real-world applications of second derivatives in parametric equations?
  2. How does the chain rule apply in finding higher-order derivatives?
  3. What are the differences between implicit and parametric differentiation?
  4. Can you demonstrate similar problems with trigonometric functions?
  5. How can d2ydx2\frac{d^2y}{dx^2} be interpreted geometrically?

Tip: Always check intermediate derivatives for errors when working with complex chain rules to ensure final expressions are correct.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Derivatives
Chain Rule
Second Derivatives

Formulas

Chain Rule: \(\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\)
Second Derivative: \(\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}\)

Theorems

Chain Rule

Suitable Grade Level

University Level (Calculus II or III)