Math Problem Statement

Find the position vector for a particle with acceleration, initial velocity, and initial position given below. ā(t) = <5t, 3 sin(t), cos(3t)>, v(0) = <0, 1,-3> r(0) = <-2,-5, -5> r(t) =

Solution

To find the position vector r(t)\mathbf{r}(t), we start from the acceleration vector a(t)=5t,3sin(t),cos(3t)\mathbf{a}(t) = \langle 5t, 3\sin(t), \cos(3t) \rangle, then integrate it step by step to find the velocity v(t)\mathbf{v}(t) and position r(t)\mathbf{r}(t).


Step 1: Find Velocity Vector v(t)\mathbf{v}(t)

The velocity vector is obtained by integrating the acceleration vector with respect to tt: v(t)=a(t)dt=5t,3sin(t),cos(3t)dt\mathbf{v}(t) = \int \mathbf{a}(t) \, dt = \int \langle 5t, 3\sin(t), \cos(3t) \rangle \, dt

Integrate each component:

  1. 5tdt=5t22+C1\int 5t \, dt = \frac{5t^2}{2} + C_1
  2. 3sin(t)dt=3cos(t)+C2\int 3\sin(t) \, dt = -3\cos(t) + C_2
  3. cos(3t)dt=sin(3t)3+C3\int \cos(3t) \, dt = \frac{\sin(3t)}{3} + C_3

So: v(t)=5t22+C1,3cos(t)+C2,sin(3t)3+C3\mathbf{v}(t) = \left\langle \frac{5t^2}{2} + C_1, -3\cos(t) + C_2, \frac{\sin(3t)}{3} + C_3 \right\rangle


Step 2: Solve for Constants in v(t)\mathbf{v}(t)

Using the initial velocity v(0)=0,1,3\mathbf{v}(0) = \langle 0, 1, -3 \rangle, substitute t=0t = 0: v(0)=5(0)22+C1,3cos(0)+C2,sin(3(0))3+C3=0,1,3\mathbf{v}(0) = \left\langle \frac{5(0)^2}{2} + C_1, -3\cos(0) + C_2, \frac{\sin(3(0))}{3} + C_3 \right\rangle = \langle 0, 1, -3 \rangle From each component:

  1. 0=C10 = C_1
  2. 1=3(1)+C2    C2=41 = -3(1) + C_2 \implies C_2 = 4
  3. 3=C3-3 = C_3

Thus: v(t)=5t22,3cos(t)+4,sin(3t)33\mathbf{v}(t) = \left\langle \frac{5t^2}{2}, -3\cos(t) + 4, \frac{\sin(3t)}{3} - 3 \right\rangle


Step 3: Find Position Vector r(t)\mathbf{r}(t)

The position vector is obtained by integrating the velocity vector v(t)\mathbf{v}(t): r(t)=v(t)dt=5t22,3cos(t)+4,sin(3t)33dt\mathbf{r}(t) = \int \mathbf{v}(t) \, dt = \int \left\langle \frac{5t^2}{2}, -3\cos(t) + 4, \frac{\sin(3t)}{3} - 3 \right\rangle \, dt

Integrate each component:

  1. 5t22dt=5t36+D1\int \frac{5t^2}{2} \, dt = \frac{5t^3}{6} + D_1
  2. (3cos(t)+4)dt=3sin(t)+4t+D2\int (-3\cos(t) + 4) \, dt = -3\sin(t) + 4t + D_2
  3. (sin(3t)33)dt=cos(3t)93t+D3\int \left(\frac{\sin(3t)}{3} - 3\right) \, dt = -\frac{\cos(3t)}{9} - 3t + D_3

So: r(t)=5t36+D1,3sin(t)+4t+D2,cos(3t)93t+D3\mathbf{r}(t) = \left\langle \frac{5t^3}{6} + D_1, -3\sin(t) + 4t + D_2, -\frac{\cos(3t)}{9} - 3t + D_3 \right\rangle


Step 4: Solve for Constants in r(t)\mathbf{r}(t)

Using the initial position r(0)=2,5,5\mathbf{r}(0) = \langle -2, -5, -5 \rangle, substitute t=0t = 0: r(0)=5(0)36+D1,3sin(0)+4(0)+D2,cos(3(0))93(0)+D3=2,5,5\mathbf{r}(0) = \left\langle \frac{5(0)^3}{6} + D_1, -3\sin(0) + 4(0) + D_2, -\frac{\cos(3(0))}{9} - 3(0) + D_3 \right\rangle = \langle -2, -5, -5 \rangle From each component:

  1. 2=D1-2 = D_1
  2. 5=D2-5 = D_2
  3. 5=19+D3    D3=449-5 = -\frac{1}{9} + D_3 \implies D_3 = -\frac{44}{9}

Thus: r(t)=5t362,3sin(t)+4t5,cos(3t)93t449\mathbf{r}(t) = \left\langle \frac{5t^3}{6} - 2, -3\sin(t) + 4t - 5, -\frac{\cos(3t)}{9} - 3t - \frac{44}{9} \right\rangle


Final Answer:

r(t)=5t362,3sin(t)+4t5,cos(3t)93t449\mathbf{r}(t) = \left\langle \frac{5t^3}{6} - 2, -3\sin(t) + 4t - 5, -\frac{\cos(3t)}{9} - 3t - \frac{44}{9} \right\rangle


Do you want a step-by-step explanation of any part or have further questions?


5 Related Questions:

  1. How is the integration of vector components performed?
  2. What are the physical interpretations of position, velocity, and acceleration vectors?
  3. Can this method be applied for higher-dimensional vector functions?
  4. How do initial conditions influence the constants of integration?
  5. What are common mistakes to avoid when integrating trigonometric functions?

Tip: Always double-check constants of integration using the initial conditions provided.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Integration of Vector Functions
Initial Conditions for Integration

Formulas

Velocity: v(t) = ∫a(t) dt + C
Position: r(t) = ∫v(t) dt + D
Trigonometric Integrals: ∫sin(t) dt = -cos(t), ∫cos(t) dt = sin(t)

Theorems

Fundamental Theorem of Calculus
Integration of Component-wise Vector Functions

Suitable Grade Level

College-Level Calculus