Math Problem Statement

find up to two decimal places the positive value of n if nc2=c(n,3)+c(n,4)

Solution

We are tasked with finding the positive value of nn up to two decimal places for the equation:

(n2)=(n3)+(n4)\binom{n}{2} = \binom{n}{3} + \binom{n}{4}

Step 1: Expanding the binomial coefficients

We can express the binomial coefficients using their definitions:

(n2)=n(n1)2\binom{n}{2} = \frac{n(n-1)}{2} (n3)=n(n1)(n2)6\binom{n}{3} = \frac{n(n-1)(n-2)}{6} (n4)=n(n1)(n2)(n3)24\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{24}

Step 2: Substituting into the equation

Now substitute these expressions into the given equation:

n(n1)2=n(n1)(n2)6+n(n1)(n2)(n3)24\frac{n(n-1)}{2} = \frac{n(n-1)(n-2)}{6} + \frac{n(n-1)(n-2)(n-3)}{24}

Step 3: Eliminate the fractions

To simplify the equation, multiply through by 24 to eliminate the denominators:

12n(n1)=4n(n1)(n2)+n(n1)(n2)(n3)12n(n-1) = 4n(n-1)(n-2) + n(n-1)(n-2)(n-3)

Step 4: Simplify the equation

Factor n(n1)(n2)n(n-1)(n-2) on the right-hand side:

12n(n1)=n(n1)(n2)(4+(n3))12n(n-1) = n(n-1)(n-2) \left(4 + (n-3)\right) 12n(n1)=n(n1)(n2)(n+1)12n(n-1) = n(n-1)(n-2)(n+1)

Step 5: Divide both sides by n(n1)n(n-1) (assuming n0n \neq 0 and n1n \neq 1):

12=(n2)(n+1)12 = (n-2)(n+1)

Step 6: Expand and solve for nn

Expanding the right-hand side:

12=n2n212 = n^2 - n - 2

Rearrange the equation:

n2n14=0n^2 - n - 14 = 0

Step 7: Solve the quadratic equation

Use the quadratic formula to solve for nn:

n=(1)±(1)24(1)(14)2(1)n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-14)}}{2(1)} n=1±1+562n = \frac{1 \pm \sqrt{1 + 56}}{2} n=1±572n = \frac{1 \pm \sqrt{57}}{2} [ n = \frac{1 \pm 7.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Combinatorics
Algebra
Quadratic Equations

Formulas

Binomial coefficient formula: \( \binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!} \)
Quadratic equation: \( ax^2 + bx + c = 0 \)

Theorems

Quadratic Formula

Suitable Grade Level

Grades 10-12