Math Problem Statement

(i) Find the value of n for which the vector r n r is solenoidal, where r = xî+ yĵ+ zk̂.

Solution

To solve for the value of nn for which the vector rnr\mathbf{r}^n \mathbf{r} is solenoidal, we need to compute its divergence. A vector field is solenoidal if its divergence is zero. Let's proceed step-by-step:

Given:

r=xi^+yj^+zk^\mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k}

rn=(x2+y2+z2)n/2\mathbf{r}^n = (x^2 + y^2 + z^2)^{n/2}

The vector field under consideration is: F=rnr=rn(xi^+yj^+zk^)\mathbf{F} = \mathbf{r}^n \mathbf{r} = \mathbf{r}^n (x \hat{i} + y \hat{j} + z \hat{k})

Compute divergence of F\mathbf{F}:

The divergence of a vector field F\mathbf{F} is given by: F=x(Fx)+y(Fy)+z(Fz)\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(F_x) + \frac{\partial}{\partial y}(F_y) + \frac{\partial}{\partial z}(F_z)

Here, Fx=rnx,Fy=rny,Fz=rnzF_x = \mathbf{r}^n x, \quad F_y = \mathbf{r}^n y, \quad F_z = \mathbf{r}^n z

Step 1: Differentiate FxF_x with respect to xx:

x(Fx)=x(rnx)\frac{\partial}{\partial x}(F_x) = \frac{\partial}{\partial x}(\mathbf{r}^n x) Using the product rule: x(rnx)=xx(rn)+rn\frac{\partial}{\partial x}(\mathbf{r}^n x) = x \frac{\partial}{\partial x}(\mathbf{r}^n) + \mathbf{r}^n

The derivative of rn=(x2+y2+z2)n/2\mathbf{r}^n = (x^2 + y^2 + z^2)^{n/2} with respect to xx is: x(rn)=n2(x2+y2+z2)(n/2)12x=nx(x2+y2+z2)(n/2)1\frac{\partial}{\partial x}(\mathbf{r}^n) = \frac{n}{2} (x^2 + y^2 + z^2)^{(n/2)-1} \cdot 2x = n x (x^2 + y^2 + z^2)^{(n/2)-1}

Thus: x(Fx)=xnx(x2+y2+z2)(n/2)1+rn\frac{\partial}{\partial x}(F_x) = x \cdot n x (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n =nx2(x2+y2+z2)(n/2)1+rn= n x^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n

Step 2: Compute y(Fy)\frac{\partial}{\partial y}(F_y) and z(Fz)\frac{\partial}{\partial z}(F_z):

Similarly: y(Fy)=ny2(x2+y2+z2)(n/2)1+rn\frac{\partial}{\partial y}(F_y) = n y^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n z(Fz)=nz2(x2+y2+z2)(n/2)1+rn\frac{\partial}{\partial z}(F_z) = n z^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n

Step 3: Add the components to get F\nabla \cdot \mathbf{F}:

F=x(Fx)+y(Fy)+z(Fz)\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(F_x) + \frac{\partial}{\partial y}(F_y) + \frac{\partial}{\partial z}(F_z) [ \nabla \cdot \mathbf{F} = [n x^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n] + [n y^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n] + [n z^2 (x^2 + y^2 + z^2)^{(n/2)-1} + \mathbf{r}^n] ] F=n(x2+y2+z2)(n/2)1(x2+y2+z2)+3rn\nabla \cdot \mathbf{F} = n (x^2 + y^2 + z^2)^{(n/2)-1} (x^2 + y^2 + z^2) + 3 \mathbf{r}^n F=n(x2+y2+z2)n/2+3rn\nabla \cdot \mathbf{F} = n (x^2 + y^2 + z^2)^{n/2} + 3 \mathbf{r}^n

Since rn=(x2+y2+z2)n/2\mathbf{r}^n = (x^2 + y^2 + z^2)^{n/2}, we simplify: F=(n+3)rn\nabla \cdot \mathbf{F} = (n + 3) \mathbf{r}^n

Step 4: Solve for nn such that F=0\nabla \cdot \mathbf{F} = 0:

For F\mathbf{F} to be solenoidal, F=0\nabla \cdot \mathbf{F} = 0. Thus: n+3=0n + 3 = 0 n=3n = -3

Final Answer:

n=3n = -3

Would you like further clarification on any step or additional examples?


Related Questions:

  1. How is the divergence of a vector field computed for general cases?
  2. What physical significance does a solenoidal vector field have in physics?
  3. Can you derive the condition for a curl-free vector field?
  4. What does the divergence theorem state and how does it relate to solenoidal fields?
  5. If rn\mathbf{r}^n were scalar, how would the solenoidal condition change?

Tip:

Always verify whether a vector field is solenoidal by checking its divergence systematically; this ensures correctness in physical and mathematical applications

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Divergence
Solenoidal Vector Fields

Formulas

Divergence formula: ∇ · F = ∂(Fx)/∂x + ∂(Fy)/∂y + ∂(Fz)/∂z
Vector magnitude: |r| = (x^2 + y^2 + z^2)^(1/2)
Power function applied to vectors: r^n = (x^2 + y^2 + z^2)^(n/2)

Theorems

Solenoidal Field Theorem (∇ · F = 0 for solenoidal fields)

Suitable Grade Level

Undergraduate Mathematics (Vector Calculus)