Math Problem Statement

If \( \mathbf{r} = x\hat{i} + y\hat{j} + 3\hat{k} \), then \( \nabla^2 \left(\frac{1}{|\mathbf{r}|}\right) \) is?

Solution

This question involves the computation of the Laplacian of 1r\frac{1}{|\mathbf{r}|}, where r=xi^+yj^+3k^\mathbf{r} = x\hat{i} + y\hat{j} + 3\hat{k} and r=x2+y2+32=x2+y2+9|\mathbf{r}| = \sqrt{x^2 + y^2 + 3^2} = \sqrt{x^2 + y^2 + 9}.

Step-by-step solution:

  1. Expression for the Laplacian:
    The Laplacian 2(1r)\nabla^2 \left(\frac{1}{|\mathbf{r}|}\right) in three dimensions is given by: 2(1r)=2x2(1r)+2y2(1r)+2z2(1r).\nabla^2 \left(\frac{1}{|\mathbf{r}|}\right) = \frac{\partial^2}{\partial x^2} \left(\frac{1}{|\mathbf{r}|}\right) + \frac{\partial^2}{\partial y^2} \left(\frac{1}{|\mathbf{r}|}\right) + \frac{\partial^2}{\partial z^2} \left(\frac{1}{|\mathbf{r}|}\right).

  2. General formula for 2(1r)\nabla^2 \left(\frac{1}{|\mathbf{r}|}\right): The Laplacian of 1r\frac{1}{|\mathbf{r}|} for r0\mathbf{r} \neq 0 is a well-known result: 2(1r)=0,for r0.\nabla^2 \left(\frac{1}{|\mathbf{r}|}\right) = 0, \quad \text{for } |\mathbf{r}| \neq 0.

    Since the question does not involve a delta function at the origin (distribution theory), we conclude: 2(1r)=0.\nabla^2 \left(\frac{1}{|\mathbf{r}|}\right) = 0.

Final Answer:

(d)0\boxed{(d) \, 0}


Would you like additional details or have further questions? Here are some related problems you might find interesting:

  1. What is the divergence of the vector field F=rr3\mathbf{F} = \frac{\mathbf{r}}{|\mathbf{r}|^3}?
  2. Compute 2r\nabla^2 |\mathbf{r}| for r=xi^+yj^+zk^\mathbf{r} = x\hat{i} + y\hat{j} + z\hat{k}.
  3. Evaluate F\nabla \cdot \mathbf{F} for F=(1r)\mathbf{F} = \nabla \left(\frac{1}{|\mathbf{r}|}\right).
  4. Determine 21rn\nabla^2 \frac{1}{|\mathbf{r}|^n} for n>1n > 1.
  5. Verify if F=(1r)\mathbf{F} = -\nabla \left(\frac{1}{|\mathbf{r}|}\right) is irrotational.

Tip: The Laplacian often simplifies greatly for symmetric functions like 1r\frac{1}{|\mathbf{r}|}. Learning its standard results can save significant time!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Laplacian Operator
Symmetry in Functions

Formulas

\( \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \)
\( \nabla^2 \left( \frac{1}{|\mathbf{r}|} \right) = 0 \text{ for } |\mathbf{r}| \neq 0 \)

Theorems

Laplacian in Three Dimensions
Harmonic Functions

Suitable Grade Level

Undergraduate (Physics or Mathematics)