Math Problem Statement

Find the missing interior angles of the given polygons.

Solution

To solve these problems, we need to calculate the missing interior angles, denoted by xx, using properties of polygons and the fact that the sum of interior angles in any polygon can be determined by the formula:

S=180(n2)S = 180(n-2) Where:

  • SS is the sum of the interior angles.
  • nn is the number of sides of the polygon.

Let's solve the problems one by one.

1. Trapezoid (4 sides)

  • Given angles: 135,60,50135^\circ, 60^\circ, 50^\circ.
  • The sum of the interior angles of a quadrilateral is 360360^\circ.
  • Equation: 135+60+50+x=360135^\circ + 60^\circ + 50^\circ + x = 360^\circ x=360(135+60+50)=360245=115x = 360^\circ - (135^\circ + 60^\circ + 50^\circ) = 360^\circ - 245^\circ = 115^\circ x=115x = 115^\circ

2. Quadrilateral (4 sides)

  • Given angles: 90,90,9090^\circ, 90^\circ, 90^\circ.
  • Again, the sum is 360360^\circ.
  • Equation: 90+90+90+x=36090^\circ + 90^\circ + 90^\circ + x = 360^\circ x=360270=90x = 360^\circ - 270^\circ = 90^\circ x=90x = 90^\circ

3. Triangle (3 sides)

  • Given angles: 35,6035^\circ, 60^\circ.
  • The sum of the interior angles of a triangle is 180180^\circ.
  • Equation: 35+60+x=18035^\circ + 60^\circ + x = 180^\circ x=180(35+60)=18095=85x = 180^\circ - (35^\circ + 60^\circ) = 180^\circ - 95^\circ = 85^\circ x=85x = 85^\circ

4. Hexagon (6 sides)

  • Given angles: 122,130,130,138,128122^\circ, 130^\circ, 130^\circ, 138^\circ, 128^\circ.
  • The sum of the interior angles of a hexagon is 720720^\circ (using the formula 180(62)180(6-2)).
  • Equation: 122+130+130+138+128+x=720122^\circ + 130^\circ + 130^\circ + 138^\circ + 128^\circ + x = 720^\circ x=720(122+130+130+138+128)=720648=72x = 720^\circ - (122^\circ + 130^\circ + 130^\circ + 138^\circ + 128^\circ) = 720^\circ - 648^\circ = 72^\circ x=72x = 72^\circ

5. Quadrilateral (4 sides)

  • Given angles: 120,120,107120^\circ, 120^\circ, 107^\circ.
  • The sum is 360360^\circ.
  • Equation: 120+120+107+x=360120^\circ + 120^\circ + 107^\circ + x = 360^\circ x=360(120+120+107)=360347=13x = 360^\circ - (120^\circ + 120^\circ + 107^\circ) = 360^\circ - 347^\circ = 13^\circ x=13x = 13^\circ

6. Quadrilateral (4 sides)

  • Given angles: 70,9070^\circ, 90^\circ.
  • Sum is 360360^\circ.
  • Equation: 70+90+90+x=36070^\circ + 90^\circ + 90^\circ + x = 360^\circ x=360(70+90+90)=360250=110x = 360^\circ - (70^\circ + 90^\circ + 90^\circ) = 360^\circ - 250^\circ = 110^\circ x=110x = 110^\circ

7. Quadrilateral (4 sides)

  • Given angles: 60,60,12060^\circ, 60^\circ, 120^\circ.
  • Sum is 360360^\circ.
  • Equation: 60+60+120+x=36060^\circ + 60^\circ + 120^\circ + x = 360^\circ x=360(60+60+120)=360240=120x = 360^\circ - (60^\circ + 60^\circ + 120^\circ) = 360^\circ - 240^\circ = 120^\circ x=120x = 120^\circ

8. Rhombus (4 sides)

  • Given angles: 140,40,140140^\circ, 40^\circ, 140^\circ.
  • The sum is 360360^\circ.
  • Equation: 140+40+140+x=360140^\circ + 40^\circ + 140^\circ + x = 360^\circ x=360(140+40+140)=360320=40x = 360^\circ - (140^\circ + 40^\circ + 140^\circ) = 360^\circ - 320^\circ = 40^\circ x=40x = 40^\circ

Do you have any questions or need more details on any of the problems? Here are five related questions to expand on this topic:

  1. How do you calculate the sum of interior angles for polygons with more than 4 sides?
  2. What is the relationship between the number of sides of a polygon and the measure of its interior angles?
  3. How do exterior angles of a polygon relate to its interior angles?
  4. Can you solve for interior angles of irregular polygons?
  5. How would you calculate the measure of each angle in a regular polygon?

Tip: Always double-check your calculations to ensure that the sum of the angles matches the expected total for that polygon.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polygon Angles
Interior Angles of Polygons

Formulas

Sum of interior angles of a polygon: S = 180(n-2)
Sum of angles in a triangle: 180°
Sum of angles in a quadrilateral: 360°

Theorems

Interior Angle Sum Theorem

Suitable Grade Level

Grade 6-8