Math Problem StatementFind the missing interior angles of the given polygons.
SolutionTo solve these problems, we need to calculate the missing interior angles, denoted by x x x , using properties of polygons and the fact that the sum of interior angles in any polygon can be determined by the formula:
S = 180 ( n − 2 ) S = 180(n-2) S = 180 ( n − 2 )
Where:
S S S is the sum of the interior angles.
n n n is the number of sides of the polygon.
Let's solve the problems one by one.
1. Trapezoid (4 sides)
Given angles: 135 ∘ , 60 ∘ , 50 ∘ 135^\circ, 60^\circ, 50^\circ 13 5 ∘ , 6 0 ∘ , 5 0 ∘ .
The sum of the interior angles of a quadrilateral is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 135 ∘ + 60 ∘ + 50 ∘ + x = 360 ∘ 135^\circ + 60^\circ + 50^\circ + x = 360^\circ 13 5 ∘ + 6 0 ∘ + 5 0 ∘ + x = 36 0 ∘
x = 360 ∘ − ( 135 ∘ + 60 ∘ + 50 ∘ ) = 360 ∘ − 245 ∘ = 115 ∘ x = 360^\circ - (135^\circ + 60^\circ + 50^\circ) = 360^\circ - 245^\circ = 115^\circ x = 36 0 ∘ − ( 13 5 ∘ + 6 0 ∘ + 5 0 ∘ ) = 36 0 ∘ − 24 5 ∘ = 11 5 ∘
x = 115 ∘ x = 115^\circ x = 11 5 ∘
2. Quadrilateral (4 sides)
Given angles: 90 ∘ , 90 ∘ , 90 ∘ 90^\circ, 90^\circ, 90^\circ 9 0 ∘ , 9 0 ∘ , 9 0 ∘ .
Again, the sum is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 90 ∘ + 90 ∘ + 90 ∘ + x = 360 ∘ 90^\circ + 90^\circ + 90^\circ + x = 360^\circ 9 0 ∘ + 9 0 ∘ + 9 0 ∘ + x = 36 0 ∘
x = 360 ∘ − 270 ∘ = 90 ∘ x = 360^\circ - 270^\circ = 90^\circ x = 36 0 ∘ − 27 0 ∘ = 9 0 ∘
x = 90 ∘ x = 90^\circ x = 9 0 ∘
3. Triangle (3 sides)
Given angles: 35 ∘ , 60 ∘ 35^\circ, 60^\circ 3 5 ∘ , 6 0 ∘ .
The sum of the interior angles of a triangle is 180 ∘ 180^\circ 18 0 ∘ .
Equation: 35 ∘ + 60 ∘ + x = 180 ∘ 35^\circ + 60^\circ + x = 180^\circ 3 5 ∘ + 6 0 ∘ + x = 18 0 ∘
x = 180 ∘ − ( 35 ∘ + 60 ∘ ) = 180 ∘ − 95 ∘ = 85 ∘ x = 180^\circ - (35^\circ + 60^\circ) = 180^\circ - 95^\circ = 85^\circ x = 18 0 ∘ − ( 3 5 ∘ + 6 0 ∘ ) = 18 0 ∘ − 9 5 ∘ = 8 5 ∘
x = 85 ∘ x = 85^\circ x = 8 5 ∘
4. Hexagon (6 sides)
Given angles: 122 ∘ , 130 ∘ , 130 ∘ , 138 ∘ , 128 ∘ 122^\circ, 130^\circ, 130^\circ, 138^\circ, 128^\circ 12 2 ∘ , 13 0 ∘ , 13 0 ∘ , 13 8 ∘ , 12 8 ∘ .
The sum of the interior angles of a hexagon is 720 ∘ 720^\circ 72 0 ∘ (using the formula 180 ( 6 − 2 ) 180(6-2) 180 ( 6 − 2 ) ).
Equation: 122 ∘ + 130 ∘ + 130 ∘ + 138 ∘ + 128 ∘ + x = 720 ∘ 122^\circ + 130^\circ + 130^\circ + 138^\circ + 128^\circ + x = 720^\circ 12 2 ∘ + 13 0 ∘ + 13 0 ∘ + 13 8 ∘ + 12 8 ∘ + x = 72 0 ∘
x = 720 ∘ − ( 122 ∘ + 130 ∘ + 130 ∘ + 138 ∘ + 128 ∘ ) = 720 ∘ − 648 ∘ = 72 ∘ x = 720^\circ - (122^\circ + 130^\circ + 130^\circ + 138^\circ + 128^\circ) = 720^\circ - 648^\circ = 72^\circ x = 72 0 ∘ − ( 12 2 ∘ + 13 0 ∘ + 13 0 ∘ + 13 8 ∘ + 12 8 ∘ ) = 72 0 ∘ − 64 8 ∘ = 7 2 ∘
x = 72 ∘ x = 72^\circ x = 7 2 ∘
5. Quadrilateral (4 sides)
Given angles: 120 ∘ , 120 ∘ , 107 ∘ 120^\circ, 120^\circ, 107^\circ 12 0 ∘ , 12 0 ∘ , 10 7 ∘ .
The sum is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 120 ∘ + 120 ∘ + 107 ∘ + x = 360 ∘ 120^\circ + 120^\circ + 107^\circ + x = 360^\circ 12 0 ∘ + 12 0 ∘ + 10 7 ∘ + x = 36 0 ∘
x = 360 ∘ − ( 120 ∘ + 120 ∘ + 107 ∘ ) = 360 ∘ − 347 ∘ = 13 ∘ x = 360^\circ - (120^\circ + 120^\circ + 107^\circ) = 360^\circ - 347^\circ = 13^\circ x = 36 0 ∘ − ( 12 0 ∘ + 12 0 ∘ + 10 7 ∘ ) = 36 0 ∘ − 34 7 ∘ = 1 3 ∘
x = 13 ∘ x = 13^\circ x = 1 3 ∘
6. Quadrilateral (4 sides)
Given angles: 70 ∘ , 90 ∘ 70^\circ, 90^\circ 7 0 ∘ , 9 0 ∘ .
Sum is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 70 ∘ + 90 ∘ + 90 ∘ + x = 360 ∘ 70^\circ + 90^\circ + 90^\circ + x = 360^\circ 7 0 ∘ + 9 0 ∘ + 9 0 ∘ + x = 36 0 ∘
x = 360 ∘ − ( 70 ∘ + 90 ∘ + 90 ∘ ) = 360 ∘ − 250 ∘ = 110 ∘ x = 360^\circ - (70^\circ + 90^\circ + 90^\circ) = 360^\circ - 250^\circ = 110^\circ x = 36 0 ∘ − ( 7 0 ∘ + 9 0 ∘ + 9 0 ∘ ) = 36 0 ∘ − 25 0 ∘ = 11 0 ∘
x = 110 ∘ x = 110^\circ x = 11 0 ∘
7. Quadrilateral (4 sides)
Given angles: 60 ∘ , 60 ∘ , 120 ∘ 60^\circ, 60^\circ, 120^\circ 6 0 ∘ , 6 0 ∘ , 12 0 ∘ .
Sum is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 60 ∘ + 60 ∘ + 120 ∘ + x = 360 ∘ 60^\circ + 60^\circ + 120^\circ + x = 360^\circ 6 0 ∘ + 6 0 ∘ + 12 0 ∘ + x = 36 0 ∘
x = 360 ∘ − ( 60 ∘ + 60 ∘ + 120 ∘ ) = 360 ∘ − 240 ∘ = 120 ∘ x = 360^\circ - (60^\circ + 60^\circ + 120^\circ) = 360^\circ - 240^\circ = 120^\circ x = 36 0 ∘ − ( 6 0 ∘ + 6 0 ∘ + 12 0 ∘ ) = 36 0 ∘ − 24 0 ∘ = 12 0 ∘
x = 120 ∘ x = 120^\circ x = 12 0 ∘
8. Rhombus (4 sides)
Given angles: 140 ∘ , 40 ∘ , 140 ∘ 140^\circ, 40^\circ, 140^\circ 14 0 ∘ , 4 0 ∘ , 14 0 ∘ .
The sum is 360 ∘ 360^\circ 36 0 ∘ .
Equation: 140 ∘ + 40 ∘ + 140 ∘ + x = 360 ∘ 140^\circ + 40^\circ + 140^\circ + x = 360^\circ 14 0 ∘ + 4 0 ∘ + 14 0 ∘ + x = 36 0 ∘
x = 360 ∘ − ( 140 ∘ + 40 ∘ + 140 ∘ ) = 360 ∘ − 320 ∘ = 40 ∘ x = 360^\circ - (140^\circ + 40^\circ + 140^\circ) = 360^\circ - 320^\circ = 40^\circ x = 36 0 ∘ − ( 14 0 ∘ + 4 0 ∘ + 14 0 ∘ ) = 36 0 ∘ − 32 0 ∘ = 4 0 ∘
x = 40 ∘ x = 40^\circ x = 4 0 ∘
Do you have any questions or need more details on any of the problems? Here are five related questions to expand on this topic:
How do you calculate the sum of interior angles for polygons with more than 4 sides?
What is the relationship between the number of sides of a polygon and the measure of its interior angles?
How do exterior angles of a polygon relate to its interior angles?
Can you solve for interior angles of irregular polygons?
How would you calculate the measure of each angle in a regular polygon?
Tip: Always double-check your calculations to ensure that the sum of the angles matches the expected total for that polygon.