Math Problem Statement

Find the average value of the function f(x) = x ln(x2) + 5 on [ee2].

Solution

To find the average value of the function f(x)=xln(x2)+5f(x) = x \ln(x^2) + 5 on the interval [e,e2][e, e^2], we use the formula for the average value of a function over an interval [a,b][a, b]:

Average value=1baabf(x)dx\text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx

Step 1: Simplify the function

First, simplify the function f(x)=xln(x2)+5f(x) = x \ln(x^2) + 5.

Notice that:

ln(x2)=2ln(x)\ln(x^2) = 2\ln(x)

So, the function simplifies to:

f(x)=x2ln(x)+5=2xln(x)+5f(x) = x \cdot 2\ln(x) + 5 = 2x \ln(x) + 5

Step 2: Set up the integral

Now, we need to find the integral of f(x)=2xln(x)+5f(x) = 2x \ln(x) + 5 over the interval [e,e2][e, e^2]:

ee2f(x)dx=ee2(2xln(x)+5)dx\int_e^{e^2} f(x) \, dx = \int_e^{e^2} \left(2x \ln(x) + 5\right) \, dx

Step 3: Integrate the function

We will integrate 2xln(x)2x \ln(x) and 55 separately.

  1. Integrate 2xln(x)2x \ln(x):

    To integrate 2xln(x)2x \ln(x), use integration by parts: udv=uvvdu\int u \, dv = uv - \int v \, du Let: u=ln(x),dv=2xdxu = \ln(x), \quad dv = 2x \, dx Then: du=1xdx,v=x2du = \frac{1}{x} \, dx, \quad v = x^2 Applying integration by parts: 2xln(x)dx=x2ln(x)x21xdx=x2ln(x)xdx=x2ln(x)x22+C\int 2x \ln(x) \, dx = x^2 \ln(x) - \int x^2 \cdot \frac{1}{x} \, dx = x^2 \ln(x) - \int x \, dx = x^2 \ln(x) - \frac{x^2}{2} + C

  2. Integrate 55:

    5dx=5x\int 5 \, dx = 5x

Thus, the integral of the function over [e,e2][e, e^2] is:

ee2(2xln(x)+5)dx=[x2ln(x)x22+5x]ee2\int_e^{e^2} \left(2x \ln(x) + 5\right) \, dx = \left[x^2 \ln(x) - \frac{x^2}{2} + 5x\right]_e^{e^2}

Step 4: Evaluate the integral

Now, we evaluate the above expression at x=e2x = e^2 and x=ex = e:

  1. At x=e2x = e^2: (e2)2ln(e2)(e2)22+5e2=e42e42+5e2=2e4e42+5e2=4e4e42+5e2=3e42+5e2(e^2)^2 \ln(e^2) - \frac{(e^2)^2}{2} + 5e^2 = e^4 \cdot 2 - \frac{e^4}{2} + 5e^2 = 2e^4 - \frac{e^4}{2} + 5e^2 = \frac{4e^4 - e^4}{2} + 5e^2 = \frac{3e^4}{2} + 5e^2

  2. At x=ex = e: e2ln(e)e22+5e=e21e22+5e=2e2e22+5e=e22+5ee^2 \ln(e) - \frac{e^2}{2} + 5e = e^2 \cdot 1 - \frac{e^2}{2} + 5e = \frac{2e^2 - e^2}{2} + 5e = \frac{e^2}{2} + 5e

The definite integral from ee to e2e^2 is:

[ \left[\frac{3e^4}{2} + 5e^2\right] - \left[\frac{e^2}{2} + 5e\right] = \frac{3e^4}{2} + 5e^2 - \frac{e^2}{2} - 5e = \frac{3e^4}{2} + \frac{4e^2}{2} - 5e = \frac{3e^4 + 4e^2}{2} - 5e ]

Step 5: Find the average value

Finally, divide this by the length of the interval, e2ee^2 - e:

Average value=1e2e(3e4+4e225e)\text{Average value} = \frac{1}{e^2 - e} \left(\frac{3e^4 + 4e^2}{2} - 5e\right)

This simplifies further to the final expression, giving us the average value of the function over the interval [e,e2][e, e^2].

Would you like the final simplified result or have any questions?


Relative Questions:

  1. How do you apply integration by parts in more complex integrals?
  2. What are some real-life applications of finding the average value of a function?
  3. How does the logarithm property ln(x2)=2ln(x)\ln(x^2) = 2\ln(x) simplify integration?
  4. What is the significance of the interval [e,e2][e, e^2] in this problem?
  5. How can the definite integral be used to find the area under a curve?

Tip: When applying integration by parts, always choose uu and dvdv wisely to simplify the resulting integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Logarithms

Formulas

Average value of a function formula
Integration by parts

Theorems

-

Suitable Grade Level

Undergraduate level