Math Problem Statement

Find the area of (i) Triangle ABC, (ii) Triangle ACD, (iii) Quadrilateral ABCD from the given figure.

Solution

Let's analyze the image and solve the given problem step by step.

Problem:

We need to find the areas of the following from the figure:

  1. ABC\triangle ABC
  2. ACD\triangle ACD
  3. Quadrilateral ABCDABCD

Given:

  • AB=6AB = 6, BC=8BC = 8, and ACAC (hypotenuse) can be calculated.
  • AD=10AD = 10, CD=10CD = 10.

Step 1: Calculate ABC\triangle ABC

In ABC\triangle ABC, ABAB and BCBC form a right angle. The formula for the area of a triangle is: Area of a triangle=12×base×height\text{Area of a triangle} = \frac{1}{2} \times \text{base} \times \text{height} Here, base = BC=8BC = 8, and height = AB=6AB = 6. Therefore: Area of ABC=12×8×6=24square units.\text{Area of } \triangle ABC = \frac{1}{2} \times 8 \times 6 = 24 \, \text{square units}.


Step 2: Calculate ACD\triangle ACD

In ACD\triangle ACD, the sides are given as AD=10AD = 10, CD=10CD = 10, and ACAC acts as the base of this isosceles triangle. We need ACAC first.

Using Pythagoras theorem in ABC\triangle ABC:

AC=AB2+BC2=62+82=36+64=100=10.AC = \sqrt{AB^2 + BC^2} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10. So, AC=10AC = 10.

Find the height of ACD\triangle ACD:

In an isosceles triangle, the altitude divides the base into two equal parts. Hence, AC=10AC = 10 is divided into two parts of 55 each. Using the Pythagoras theorem for one of the smaller right triangles formed: Height of ACD=AD2(AC2)2=10252=10025=75=53.\text{Height of } \triangle ACD = \sqrt{AD^2 - \left(\frac{AC}{2}\right)^2} = \sqrt{10^2 - 5^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}.

Calculate the area:

Area of ACD=12×base×height=12×10×53=253square units.\text{Area of } \triangle ACD = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 10 \times 5\sqrt{3} = 25\sqrt{3} \, \text{square units}.


Step 3: Calculate Quadrilateral ABCDABCD

The area of ABCDABCD is the sum of the areas of ABC\triangle ABC and ACD\triangle ACD: Area of ABCD=Area of ABC+Area of ACD=24+253square units.\text{Area of } ABCD = \text{Area of } \triangle ABC + \text{Area of } \triangle ACD = 24 + 25\sqrt{3} \, \text{square units}.


Final Answers:

  1. Area of ABC=24square units\text{Area of } \triangle ABC = 24 \, \text{square units}
  2. Area of ACD=253square units\text{Area of } \triangle ACD = 25\sqrt{3} \, \text{square units}
  3. Area of quadrilateral ABCD=24+253square units\text{Area of quadrilateral } ABCD = 24 + 25\sqrt{3} \, \text{square units}

Let me know if you need detailed steps or clarification on any part!


Follow-up Questions:

  1. How do you derive the height of an isosceles triangle?
  2. What is the significance of the Pythagorean theorem in this problem?
  3. Can you calculate the perimeter of ABCDABCD?
  4. What are the properties of isosceles triangles used in this problem?
  5. How can the area be verified using another method?

Tip:

Always check if the given figure involves symmetry or special properties (like right angles or isosceles triangles) to simplify calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Triangles
Quadrilaterals
Right-Angle Triangles
Isosceles Triangles

Formulas

Area of a triangle = (1/2) × base × height
Pythagoras theorem: a^2 + b^2 = c^2
Altitude formula for isosceles triangle: sqrt(hypotenuse^2 - (base/2)^2)

Theorems

Pythagorean Theorem
Properties of Isosceles Triangles

Suitable Grade Level

Grade 8-10