Math Problem Statement

Find angle HJG. EFG is a triangle, HJ is parallel to FG, Angle FEG = 75°, Angle EFG = 2x°, and angle FGE = (x + 15)°.

Solution

To solve for angle HJGHJG, we analyze the given information in the problem:

Given:

  1. EFGEFG is a triangle.
  2. HJHJ is parallel to FGFG.
  3. Angle FEG=75FEG = 75^\circ.
  4. Angle EFG=2xEFG = 2x^\circ.
  5. Angle FGE=(x+15)FGE = (x + 15)^\circ.

Step 1: Solve for xx

In any triangle, the sum of interior angles is 180180^\circ. For triangle EFGEFG: Angle FEG+Angle EFG+Angle FGE=180\text{Angle } FEG + \text{Angle } EFG + \text{Angle } FGE = 180^\circ Substitute the values: 75+2x+(x+15)=18075^\circ + 2x^\circ + (x + 15)^\circ = 180^\circ Simplify: 75+2x+x+15=18075 + 2x + x + 15 = 180 3x+90=1803x + 90 = 180 3x=903x = 90 x=30x = 30

Step 2: Find specific angles in triangle EFGEFG

Now substitute (x = 30

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Angles in a Triangle
Parallel Lines and Transversals

Formulas

Sum of angles in a triangle = 180°

Theorems

Triangle Sum Theorem
Corresponding Angles Theorem

Suitable Grade Level

Grades 8-10