Math Problem Statement

In the diagram below, we have $\overline{AB}\parallel\overline{CD}$, $EF = FG$, $\angle AEG = x^\circ$, and $\angle BEF = 100^\circ + x^\circ$. Find the value of $x$.

[asy] pair A,B,C,D,EE,F,G; D = (0,0); C = (1.5,0); A = (1.5,0.7); B = (0,0.7); draw (A--B); draw(C--D); EE = (0.2,0.7); F = (0.4,0); G = F + (sqrt(0.53),0); draw(F--EE--G); label("$G$",G,S); label("$F$",F,S); label("$E$",EE,N); label("$A$",A,E); label("$C$",C,E); label("$B$",B,W); label("$D$",D,W); dot(A); dot(B); dot(C); dot(D); [/asy]

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parallel lines
Isosceles triangles
Angle sum of triangles
Transversal angles

Formulas

Angle sum of a triangle: \(\angle A + \angle B + \angle C = 180^\circ\)

Theorems

Corresponding Angles Theorem
Isosceles Triangle Theorem

Suitable Grade Level

Grades 9-10