Math Problem Statement

Suppose A = [[-1, 2], [-4, 7]] and A^2 - αA + I = 0 for some α ∈ ℝ. Find the value of α.

Solution

We are tasked with finding the value of α\alpha for the given matrix equation:

A2αA+I=0A^2 - \alpha A + I = 0

where A=[1247]A = \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} and II is the 2×22 \times 2 identity matrix.


Step 1: Compute A2A^2

First, calculate A2=AAA^2 = A \cdot A.
Using matrix multiplication:

A2=[1247][1247].A^2 = \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}.

Perform the multiplication:

  • Element (1,1): (1)(1)+(2)(4)=18=7(-1)(-1) + (2)(-4) = 1 - 8 = -7,
  • Element (1,2): (1)(2)+(2)(7)=2+14=12(-1)(2) + (2)(7) = -2 + 14 = 12,
  • Element (2,1): (4)(1)+(7)(4)=428=24(-4)(-1) + (7)(-4) = 4 - 28 = -24,
  • Element (2,2): (4)(2)+(7)(7)=8+49=41(-4)(2) + (7)(7) = -8 + 49 = 41.

Thus:

A2=[7122441].A^2 = \begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix}.


Step 2: Plug A2A^2 and AA into the equation

The equation is:

A2αA+I=0.A^2 - \alpha A + I = 0.

Substitute A2A^2, AA, and II:

[7122441]α[1247]+[1001]=0.\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0.

Combine the terms:

[7122441]α[1247]+[1001]=[7+112+024+041+1]α[1247].\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 + 1 & 12 + 0 \\ -24 + 0 & 41 + 1 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}.

Simplify:

[6122442]α[1247]=0.\begin{bmatrix} -6 & 12 \\ -24 & 42 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} = 0.


Step 3: Solve for α\alpha

Expand αA-\alpha A:

α[1247]=[α2α4α7α].-\alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} \alpha & -2\alpha \\ 4\alpha & -7\alpha \end{bmatrix}.

Substitute back:

[6122442]+[α2α4α7α]=0.\begin{bmatrix} -6 & 12 \\ -24 & 42 \end{bmatrix} + \begin{bmatrix} \alpha & -2\alpha \\ 4\alpha & -7\alpha \end{bmatrix} = 0.

Combine matrices:

[6+α122α24+4α427α]=0.\begin{bmatrix} -6 + \alpha & 12 - 2\alpha \\ -24 + 4\alpha & 42 - 7\alpha \end{bmatrix} = 0.

This gives the system of equations by equating each entry to 0:

  1. 6+α=0-6 + \alpha = 0,
  2. 122α=012 - 2\alpha = 0,
  3. 24+4α=0-24 + 4\alpha = 0,
  4. 427α=042 - 7\alpha = 0.

Step 4: Solve the system

From the first equation:

α=6.\alpha = 6.

Verify this value in the other equations:

  • Second equation: 122(6)=1212=012 - 2(6) = 12 - 12 = 0 (True),
  • Third equation: 24+4(6)=24+24=0-24 + 4(6) = -24 + 24 = 0 (True),
  • Fourth equation: 427(6)=4242=042 - 7(6) = 42 - 42 = 0 (True).

Thus, α=6\alpha = 6 satisfies all equations.


Final Answer:

α=6\boxed{\alpha = 6}


Would you like me to expand on any part of this solution?
Here are some related questions you might consider exploring:

  1. What is the determinant of A2A^2?
  2. How do eigenvalues relate to this matrix equation?
  3. Can the characteristic equation of AA verify this result?
  4. What happens if we change AA to a different matrix but keep the same equation?
  5. How is the Cayley-Hamilton theorem relevant to this problem?

Tip: When solving matrix equations, always verify your solutions by substituting back into the original equation to ensure consistency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Linear Equations

Formulas

Matrix multiplication rules
General form of a quadratic matrix equation: A^2 - αA + I = 0

Theorems

Matrix Arithmetic
Properties of Identity Matrices

Suitable Grade Level

Undergraduate Mathematics