Math Problem Statement
Suppose A = [[-1, 2], [-4, 7]] and A^2 - αA + I = 0 for some α ∈ ℝ. Find the value of α.
Solution
We are tasked with solving for in the given matrix equation:
where , and is the identity matrix. Let’s work through this step by step.
Step 1: Compute
We calculate :
Using matrix multiplication:
(-1)(-1) + (2)(-4) & (-1)(2) + (2)(7) \\ (-4)(-1) + (7)(-4) & (-4)(2) + (7)(7) \end{bmatrix} = \begin{bmatrix} 1 - 8 & -2 + 14 \\ 4 - 28 & -8 + 49 \end{bmatrix} = \begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix}.$$ --- ### Step 2: Substitute into the equation The given equation is: $$A^2 - \alpha A + I = 0.$$ Substituting $$A^2$$, $$A$$, and $$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$, we have: $$\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ Simplify: $$\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0.$$ --- ### Step 3: Expand and equate entries Combining terms: $$\begin{bmatrix} -7 + 1 & 12 + 0 \\ -24 + 0 & 41 + 1 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ -24 & 42 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}.$$ Now: $$\begin{bmatrix} -6 + \alpha & 12 - 2\alpha \\ -24 + 4\alpha & 42 - 7\alpha \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ This gives four scalar equations: 1. $$-6 + \alpha = 0$$, 2. $$12 - 2\alpha = 0$$, 3. $$-24 + 4\alpha = 0$$, 4. $$42 - 7\alpha = 0$$. --- ### Step 4: Solve for $$\alpha$$ From the first equation: $$\alpha = 6.$$ Verify with other equations: - Second equation: $$12 - 2(6) = 0 \quad \text{(true)}$$, - Third equation: $$-24 + 4(6) = 0 \quad \text{(true)}$$, - Fourth equation: $$42 - 7(6) = 0 \quad \text{(true)}$$. --- ### Final Answer: $$\boxed{\alpha = 6}$$ Let me know if you want further details! --- ### 5 Related Questions: 1. How is the Cayley-Hamilton theorem related to this problem? 2. What are eigenvalues and eigenvectors of matrix $$A$$? 3. How can this problem be solved using determinants? 4. How does matrix addition/subtraction work element-wise? 5. What is the general form of matrix equations involving powers of $$A$$? ### Tip: Always verify your solution by substituting it back into the original equation to ensure correctness.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Multiplication
Matrix Equations
Algebraic Substitution
Formulas
Matrix Multiplication Rule
Matrix Identity Property
Theorems
Properties of Matrices
Cayley-Hamilton Theorem
Suitable Grade Level
Undergraduate (Linear Algebra Level)