Math Problem Statement

Suppose A = [[-1, 2], [-4, 7]] and A^2 - αA + I = 0 for some α ∈ ℝ. Find the value of α.

Solution

We are tasked with solving for α\alpha in the given matrix equation:

A2αA+I=0,A^2 - \alpha A + I = 0, where A=[1247]A = \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}, and II is the 2×22 \times 2 identity matrix. Let’s work through this step by step.


Step 1: Compute A2A^2

We calculate A2=AAA^2 = A \cdot A: A=[1247].A = \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}. A2=[1247][1247].A^2 = \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}.

Using matrix multiplication:

(-1)(-1) + (2)(-4) & (-1)(2) + (2)(7) \\ (-4)(-1) + (7)(-4) & (-4)(2) + (7)(7) \end{bmatrix} = \begin{bmatrix} 1 - 8 & -2 + 14 \\ 4 - 28 & -8 + 49 \end{bmatrix} = \begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix}.$$ --- ### Step 2: Substitute into the equation The given equation is: $$A^2 - \alpha A + I = 0.$$ Substituting $$A^2$$, $$A$$, and $$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$, we have: $$\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ Simplify: $$\begin{bmatrix} -7 & 12 \\ -24 & 41 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0.$$ --- ### Step 3: Expand and equate entries Combining terms: $$\begin{bmatrix} -7 + 1 & 12 + 0 \\ -24 + 0 & 41 + 1 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ -24 & 42 \end{bmatrix} - \alpha \begin{bmatrix} -1 & 2 \\ -4 & 7 \end{bmatrix}.$$ Now: $$\begin{bmatrix} -6 + \alpha & 12 - 2\alpha \\ -24 + 4\alpha & 42 - 7\alpha \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$ This gives four scalar equations: 1. $$-6 + \alpha = 0$$, 2. $$12 - 2\alpha = 0$$, 3. $$-24 + 4\alpha = 0$$, 4. $$42 - 7\alpha = 0$$. --- ### Step 4: Solve for $$\alpha$$ From the first equation: $$\alpha = 6.$$ Verify with other equations: - Second equation: $$12 - 2(6) = 0 \quad \text{(true)}$$, - Third equation: $$-24 + 4(6) = 0 \quad \text{(true)}$$, - Fourth equation: $$42 - 7(6) = 0 \quad \text{(true)}$$. --- ### Final Answer: $$\boxed{\alpha = 6}$$ Let me know if you want further details! --- ### 5 Related Questions: 1. How is the Cayley-Hamilton theorem related to this problem? 2. What are eigenvalues and eigenvectors of matrix $$A$$? 3. How can this problem be solved using determinants? 4. How does matrix addition/subtraction work element-wise? 5. What is the general form of matrix equations involving powers of $$A$$? ### Tip: Always verify your solution by substituting it back into the original equation to ensure correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Matrix Equations
Algebraic Substitution

Formulas

Matrix Multiplication Rule
Matrix Identity Property

Theorems

Properties of Matrices
Cayley-Hamilton Theorem

Suitable Grade Level

Undergraduate (Linear Algebra Level)