Math Problem Statement

Jika diketahui U4=8 dan U10=20Maka suku ke-50 adalah

Solution

Diketahui suku ke-4 U4=8U_4 = 8 dan suku ke-10 U10=20U_{10} = 20. Kita diminta mencari suku ke-50 U50U_{50}.

Karena tidak disebutkan jenis barisan, kita akan mengasumsikan bahwa ini adalah barisan aritmetika. Dalam barisan aritmetika, suku ke-n dinyatakan dengan rumus:

Un=U1+(n1)bU_n = U_1 + (n - 1) \cdot b

Di mana:

  • UnU_n adalah suku ke-n,
  • U1U_1 adalah suku pertama,
  • bb adalah beda (selisih antara dua suku berturut-turut).

Langkah 1: Membentuk persamaan

Kita punya dua informasi:

  1. U4=8U_4 = 8
  2. U10=20U_{10} = 20

Dengan menggunakan rumus suku ke-n, kita buat dua persamaan:

  • Untuk U4U_4: U4=U1+(41)b=U1+3b=8(Persamaan 1)U_4 = U_1 + (4 - 1) \cdot b = U_1 + 3b = 8 \quad \text{(Persamaan 1)}

  • Untuk U10U_{10}: U10=U1+(101)b=U1+9b=20(Persamaan 2)U_{10} = U_1 + (10 - 1) \cdot b = U_1 + 9b = 20 \quad \text{(Persamaan 2)}

Langkah 2: Menyelesaikan sistem persamaan

Kita selesaikan persamaan (1) dan (2) secara simultan.

  • Dari Persamaan 1: U1+3b=8U_1 + 3b = 8U1=83bU_1 = 8 - 3b.
  • Substitusi U1=83bU_1 = 8 - 3b ke dalam Persamaan 2:

(83b)+9b=20(8 - 3b) + 9b = 20 8+6b=208 + 6b = 20 6b=208=126b = 20 - 8 = 12 b=2b = 2

Langkah 3: Menentukan U1U_1

Substitusi b=2b = 2 ke dalam Persamaan 1:

U1+32=8U_1 + 3 \cdot 2 = 8 U1+6=8U_1 + 6 = 8 U1=2U_1 = 2

Langkah 4: Mencari suku ke-50 U50U_{50}

Sekarang kita bisa menggunakan rumus suku ke-n untuk mencari U50U_{50}:

U50=U1+(501)b=2+492=2+98=100U_{50} = U_1 + (50 - 1) \cdot b = 2 + 49 \cdot 2 = 2 + 98 = 100

Jadi, suku ke-50 adalah 100.

Apakah Anda ingin penjelasan lebih detail atau ada pertanyaan? Berikut adalah 5 pertanyaan terkait:

  1. Bagaimana cara menentukan beda (b) dalam barisan aritmetika?
  2. Apa perbedaan antara barisan aritmetika dan barisan geometri?
  3. Bagaimana cara menemukan suku ke-n dalam barisan geometri?
  4. Apa yang terjadi jika suku pertama U1U_1 tidak diketahui?
  5. Bagaimana cara menentukan jumlah n suku pertama dalam barisan aritmetika?

Tip: Dalam barisan aritmetika, beda antar suku selalu konstan, yang mempermudah penyelesaian masalah.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Sequences
Algebra

Formulas

Un = U1 + (n - 1) * b

Theorems

-

Suitable Grade Level

Grades 10-12