Math Problem Statement

Let X∼Exponential(λ). (a) Find M(t) = E(etX). (b) Use the result obtained in a) to find E(X) (c) Use the result obtained in a) to find Var(X)

Solution

To solve the given questions, we analyze the properties of the exponential distribution XExponential(λ)X \sim \text{Exponential}(\lambda), where λ>0\lambda > 0 is the rate parameter.

(a) Find M(t)=E(etX)M(t) = \mathbb{E}(e^{tX})

The moment-generating function (MGF) M(t)M(t) is defined as: M(t)=E(etX)=0etxfX(x)dxM(t) = \mathbb{E}(e^{tX}) = \int_{0}^{\infty} e^{tx} f_X(x) \, dx where fX(x)=λeλxf_X(x) = \lambda e^{-\lambda x} is the probability density function (PDF) of the exponential distribution. Substituting fX(x)f_X(x) into the integral: M(t)=0etxλeλxdxM(t) = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} \, dx

Combine the exponents: M(t)=λ0e(tλ)xdxM(t) = \lambda \int_{0}^{\infty} e^{(t - \lambda)x} \, dx

The integral converges if t<λt < \lambda. For t<λt < \lambda, the integral evaluates as: \int_{0}^{\infty} e^{(t - \lambda)x} \, dx = \frac{1}{\lambda - t}, \quad \text{(valid for t < \lambda)}.

Thus: M(t)=λλt,t<λ.M(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.

(b) Use the result obtained in (a) to find E(X)\mathbb{E}(X)

The expected value E(X)\mathbb{E}(X) can be found from the first derivative of M(t)M(t) at t=0t = 0: E(X)=M(0).\mathbb{E}(X) = M'(0).

From M(t)=λλtM(t) = \frac{\lambda}{\lambda - t}, calculate the derivative: M(t)=ddt(λλt)=λ(λt)2.M'(t) = \frac{d}{dt} \left( \frac{\lambda}{\lambda - t} \right) = \frac{\lambda}{(\lambda - t)^2}.

Substitute t=0t = 0: M(0)=λλ2=1λ.M'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}.

Thus: E(X)=1λ.\mathbb{E}(X) = \frac{1}{\lambda}.

(c) Use the result obtained in (a) to find Var(X)\text{Var}(X)

The variance Var(X)\text{Var}(X) is given by: Var(X)=E(X2)[E(X)]2.\text{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2.

First, find E(X2)\mathbb{E}(X^2) using the second derivative of M(t)M(t) at t=0t = 0: E(X2)=M(0).\mathbb{E}(X^2) = M''(0).

From M(t)=λ(λt)2M'(t) = \frac{\lambda}{(\lambda - t)^2}, calculate the second derivative: M(t)=ddt(λ(λt)2)=2λ(λt)3.M''(t) = \frac{d}{dt} \left( \frac{\lambda}{(\lambda - t)^2} \right) = \frac{2\lambda}{(\lambda - t)^3}.

Substitute t=0t = 0: M(0)=2λλ3=2λ2.M''(0) = \frac{2\lambda}{\lambda^3} = \frac{2}{\lambda^2}.

Thus: E(X2)=2λ2.\mathbb{E}(X^2) = \frac{2}{\lambda^2}.

Now calculate Var(X)\text{Var}(X): Var(X)=E(X2)[E(X)]2=2λ2(1λ)2.\text{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2.

Simplify: Var(X)=2λ21λ2=1λ2.\text{Var}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.

Final Results:

  1. M(t)=λλt,t<λ.M(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.
  2. E(X)=1λ.\mathbb{E}(X) = \frac{1}{\lambda}.
  3. Var(X)=1λ2.\text{Var}(X) = \frac{1}{\lambda^2}.

Would you like a step-by-step breakdown or further clarification on any part of the solution?

Here are 5 related questions to deepen your understanding:

  1. What happens to M(t)M(t) when tλt \geq \lambda?
  2. How is the MGF used to derive higher moments of a distribution?
  3. What is the relationship between the rate parameter λ\lambda and the mean of the exponential distribution?
  4. Can you generalize the variance result for a transformed exponential variable Y=aXY = aX?
  5. How does the exponential distribution relate to the Poisson process?

Tip: The exponential distribution is memoryless, meaning P(X>x+tX>t)=P(X>x)P(X > x + t \mid X > t) = P(X > x), which simplifies many calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability and Statistics
Exponential Distribution
Moment-Generating Functions
Expected Value
Variance

Formulas

Moment-Generating Function: M(t) = E(e^{tX})
PDF of Exponential Distribution: f_X(x) = λe^{-λx}
Expected Value from MGF: E(X) = M'(0)
Variance: Var(X) = E(X^2) - [E(X)]^2

Theorems

Moment-Generating Function Theorem
Properties of Exponential Distribution

Suitable Grade Level

Undergraduate Level (Probability and Statistics)