Math Problem Statement

Derive the mgf of an exponential distribution and hence find mean and variance

Solution

The Moment Generating Function (MGF) of a random variable is defined as:

MX(t)=E[etX]M_X(t) = \mathbb{E}\left[e^{tX}\right]

For an exponential distribution with rate parameter λ\lambda, the probability density function (PDF) is:

fX(x)=λeλx,x0f_X(x) = \lambda e^{-\lambda x}, \quad x \geq 0

Step 1: Deriving the MGF

The MGF of XX is given by:

MX(t)=E[etX]=0etxfX(x)dxM_X(t) = \mathbb{E}\left[e^{tX}\right] = \int_{0}^{\infty} e^{tx} f_X(x) \, dx

Substituting the PDF of the exponential distribution:

MX(t)=0etxλeλxdxM_X(t) = \int_{0}^{\infty} e^{tx} \lambda e^{-\lambda x} \, dx

This simplifies to:

MX(t)=λ0ex(tλ)dxM_X(t) = \lambda \int_{0}^{\infty} e^{x(t - \lambda)} \, dx

To evaluate the integral, notice that it is a standard form integral:

0eaxdx=1afora>0\int_{0}^{\infty} e^{-ax} \, dx = \frac{1}{a} \quad \text{for} \, a > 0

Here, a=λta = \lambda - t, so:

MX(t)=λ1λtfort<λM_X(t) = \lambda \cdot \frac{1}{\lambda - t} \quad \text{for} \, t < \lambda

Thus, the MGF of the exponential distribution is:

MX(t)=λλt,fort<λM_X(t) = \frac{\lambda}{\lambda - t}, \quad \text{for} \, t < \lambda

Step 2: Finding the Mean and Variance

Mean (μ\mu)

The mean of XX can be found by differentiating the MGF with respect to tt and then evaluating at t=0t = 0:

μ=E[X]=MX(0)\mu = \mathbb{E}[X] = M_X'(0)

Differentiate MX(t)M_X(t) with respect to tt:

MX(t)=ddt(λλt)M_X'(t) = \frac{d}{dt} \left(\frac{\lambda}{\lambda - t}\right)

Applying the quotient rule:

MX(t)=0(λt)λ(1)(λt)2=λ(λt)2M_X'(t) = \frac{0(\lambda - t) - \lambda(-1)}{(\lambda - t)^2} = \frac{\lambda}{(\lambda - t)^2}

Evaluate at t=0t = 0:

MX(0)=λλ2=1λM_X'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}

Thus, the mean of the exponential distribution is:

μ=1λ\mu = \frac{1}{\lambda}

Variance (σ2\sigma^2)

The variance can be found using the second derivative of the MGF:

Var(X)=MX(0)(MX(0))2\text{Var}(X) = M_X''(0) - (M_X'(0))^2

First, differentiate MX(t)M_X'(t) to find MX(t)M_X''(t):

MX(t)=ddt(λ(λt)2)M_X''(t) = \frac{d}{dt} \left(\frac{\lambda}{(\lambda - t)^2}\right)

Using the chain rule:

MX(t)=2λ(λt)3M_X''(t) = \frac{2\lambda}{(\lambda - t)^3}

Evaluate at t=0t = 0:

MX(0)=2λλ3=2λ2M_X''(0) = \frac{2\lambda}{\lambda^3} = \frac{2}{\lambda^2}

Finally, calculate the variance:

Var(X)=2λ2(1λ)2=2λ21λ2=1λ2\text{Var}(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}

Summary

  • MGF of the exponential distribution: MX(t)=λλt,fort<λ\displaystyle M_X(t) = \frac{\lambda}{\lambda - t}, \quad \text{for} \, t < \lambda
  • Mean: μ=1λ\displaystyle \mu = \frac{1}{\lambda}
  • Variance: Var(X)=1λ2\displaystyle \text{Var}(X) = \frac{1}{\lambda^2}

Would you like more details on any part of this explanation?


Here are 5 related questions you might be interested in:

  1. How does the exponential distribution relate to the Poisson distribution?
  2. What is the relationship between the exponential distribution and the gamma distribution?
  3. How do you find the MGF of a Poisson distribution?
  4. What is the significance of the memoryless property in the exponential distribution?
  5. Can you derive the MGF for the normal distribution?

Tip: The MGF can be a powerful tool for deriving moments, such as mean and variance, especially when dealing with complex distributions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Distribution
Moment Generating Function (MGF)
Probability Density Function (PDF)
Mean
Variance

Formulas

MGF formula: M_X(t) = E[e^{tX}]

Theorems

-

Suitable Grade Level

College Level