Math Problem Statement

Evaluate the double integral of sin(x^2 + y^2) over the annular region 16 <= x^2 + y^2 <= 49 using polar coordinates.

Solution

To solve this problem using polar coordinates, we need to evaluate the double integral:

Rsin(x2+y2)dA\iint_R \sin(x^2 + y^2) \, dA

where RR is the annular region 16x2+y24916 \leq x^2 + y^2 \leq 49. Here's how we can solve this step-by-step:


Step 1: Change to polar coordinates

In polar coordinates: x2+y2=r2,dA=rdrdθx^2 + y^2 = r^2, \quad dA = r \, dr \, d\theta

The integral becomes: Rsin(x2+y2)dA=Rsin(r2)rdrdθ\iint_R \sin(x^2 + y^2) \, dA = \iint_R \sin(r^2) \, r \, dr \, d\theta

The region RR corresponds to rr ranging from 16=4\sqrt{16} = 4 to 49=7\sqrt{49} = 7, and θ\theta ranging from 00 to 2π2\pi.


Step 2: Separate the integral

The integral separates as: 02πdθ47sin(r2)rdr\int_0^{2\pi} d\theta \int_4^7 \sin(r^2) \, r \, dr

The θ\theta-integral is straightforward: 02πdθ=2π\int_0^{2\pi} d\theta = 2\pi

Now, focus on the rr-integral: 47sin(r2)rdr\int_4^7 \sin(r^2) \, r \, dr


Step 3: Simplify the rr-integral with substitution

Let u=r2u = r^2, so du=2rdrdu = 2r \, dr, or rdr=12dur \, dr = \frac{1}{2} du.

When r=4r = 4, u=16u = 16.
When r=7r = 7, u=49u = 49.

The integral becomes: 47sin(r2)rdr=121649sin(u)du\int_4^7 \sin(r^2) \, r \, dr = \frac{1}{2} \int_{16}^{49} \sin(u) \, du


Step 4: Compute the uu-integral

The integral of sin(u)\sin(u) is: sin(u)du=cos(u)\int \sin(u) \, du = -\cos(u)

Thus: 121649sin(u)du=12[cos(u)]1649\frac{1}{2} \int_{16}^{49} \sin(u) \, du = \frac{1}{2} \left[ -\cos(u) \right]_{16}^{49}

Evaluate the bounds: cos(49)+cos(16)-\cos(49) + \cos(16)

So the result is: 12(cos(16)cos(49))\frac{1}{2} \left( \cos(16) - \cos(49) \right)


Step 5: Multiply by θ\theta-integral

Now multiply by 02πdθ=2π\int_0^{2\pi} d\theta = 2\pi: Result=2π12(cos(16)cos(49))\text{Result} = 2\pi \cdot \frac{1}{2} \left( \cos(16) - \cos(49) \right)

Simplify: Result=π(cos(16)cos(49))\text{Result} = \pi \left( \cos(16) - \cos(49) \right)


Final Answer:

π(cos(16)cos(49))\pi \left( \cos(16) - \cos(49) \right)

Would you like a detailed explanation of any step or further simplification?


Related Questions:

  1. How do polar coordinates simplify integration in circular regions?
  2. What substitution rules work well for integrals like sin(r2)rdr\int \sin(r^2) \, r \, dr?
  3. Why is dA=rdrdθdA = r \, dr \, d\theta in polar coordinates?
  4. What is the geometric interpretation of this integral over the annular region?
  5. Can numerical methods be used to approximate this result?

Tip:

When integrating over circular regions, always check if polar coordinates simplify the bounds and integrand before attempting Cartesian integration!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Double Integrals
Substitution Methods

Formulas

x^2 + y^2 = r^2
dA = r dr dθ
∫ sin(r^2) r dr
∫ sin(u) du = -cos(u)

Theorems

Transformation to polar coordinates
Substitution method

Suitable Grade Level

College-level (Calculus 2 or higher)