Math Problem Statement

Using polar coordinates, evaluate the integral \(\iint_R \sin(x^2 + y^2) \, dA\), where \(R\) is the region \(4 \leq x^2 + y^2 \leq 25\).

Solution

To solve the given integral using polar coordinates, we will follow these steps:

Problem:

Evaluate
Rsin(x2+y2)dA\iint_R \sin(x^2 + y^2) \, dA where RR is the annular region defined by 4x2+y2254 \leq x^2 + y^2 \leq 25.


Step 1: Convert the integral to polar coordinates

In polar coordinates:

  • x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta
  • x2+y2=r2x^2 + y^2 = r^2
  • dA=rdrdθdA = r \, dr \, d\theta

The region RR becomes: 4r2252r54 \leq r^2 \leq 25 \quad \Rightarrow \quad 2 \leq r \leq 5 and θ\theta ranges from 00 to 2π2\pi (full circle).


Step 2: Rewrite the integral

The integral in polar coordinates is: 02π25sin(r2)rdrdθ\int_0^{2\pi} \int_2^5 \sin(r^2) \cdot r \, dr \, d\theta


Step 3: Separate the integral

The integrand does not depend on θ\theta, so the integral separates: 02πdθ25rsin(r2)dr\int_0^{2\pi} \, d\theta \cdot \int_2^5 r \sin(r^2) \, dr The first integral evaluates to: 02πdθ=2π\int_0^{2\pi} \, d\theta = 2\pi

Thus, the integral becomes: 2π25rsin(r2)dr2\pi \int_2^5 r \sin(r^2) \, dr


Step 4: Simplify the radial integral

Use the substitution u=r2u = r^2:

  • du=2rdrdu = 2r \, dr
  • When r=2r = 2, u=4u = 4
  • When r=5r = 5, u=25u = 25

The integral transforms to: 25rsin(r2)dr=12425sin(u)du\int_2^5 r \sin(r^2) \, dr = \frac{1}{2} \int_4^{25} \sin(u) \, du


Step 5: Evaluate the integral

The integral of sin(u)\sin(u) is: sin(u)du=cos(u)\int \sin(u) \, du = -\cos(u)

Thus: 12425sin(u)du=12[cos(u)]425\frac{1}{2} \int_4^{25} \sin(u) \, du = \frac{1}{2} \left[ -\cos(u) \right]_4^{25} =12[cos(25)+cos(4)]= \frac{1}{2} \left[ -\cos(25) + \cos(4) \right]


Step 6: Final expression

The full integral is: 2π12[cos(25)+cos(4)]2\pi \cdot \frac{1}{2} \left[ -\cos(25) + \cos(4) \right] =π[cos(4)cos(25)]= \pi \left[ \cos(4) - \cos(25) \right]


Final Answer:

Rsin(x2+y2)dA=π[cos(4)cos(25)]\iint_R \sin(x^2 + y^2) \, dA = \pi \left[ \cos(4) - \cos(25) \right]

Would you like a detailed explanation of any step?


Expanding Questions:

  1. How does the conversion from Cartesian to polar coordinates work in general?
  2. Why is the Jacobian determinant rr included in the area element dAdA?
  3. What are the implications of symmetry in polar coordinates when solving integrals?
  4. Could this integral be solved using Cartesian coordinates, and if so, how?
  5. How does substitution help simplify integrals involving trigonometric functions?

Tip:

When solving polar integrals, always verify the bounds and ensure that the Jacobian rr is included to account for the coordinate transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Double Integrals
Coordinate Transformation
Trigonometric Integration

Formulas

Conversion to polar coordinates: \(x = r\cos\theta\), \(y = r\sin\theta\)
Area element in polar coordinates: \(dA = r \, dr \, d\theta\)
Substitution: \(u = r^2, \ du = 2r \, dr\)

Theorems

Jacobian Determinant for Polar Coordinates
Definite Integral Properties
Integration by Substitution

Suitable Grade Level

Undergraduate Level (Calculus II or III)