Math Problem Statement

The following limit represents the definite integral ∫baf(x)dx for some real numbers a and b, and an integrable function f:

limn→∞∑i=1n4in2(2+4in)

a) Find Δx and xi from this expression and deduce the values of a and b, and the function f.

FORMATTING: Your expression for Δx should be an expression involving n.  Your expression for xi  should be an expression involving the index i and n. The numbers a and b are real numbers, and f(x) should be a function of x. Write your answer in the form [Δx,xi,a,b,f(x)] including the square brackets [ ] and commas (,) between each term.** Strict* scientific calculator notation is required in your answer, meaning in particular *** for multiplication**, e.g. 2x must be written* 2*xand (x+1)(x+2) must be written (x+1)*(x+2).

Answer: [Δx,xi,a,b,f(x)]=

b) Compute the value of the limit above. Give your answer with an accuracy of four decimal places.

Answer: limn→∞∑i=1n4in2(2+4in)=

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Riemann Sums
Limits

Formulas

Riemann sum formula: ∑ f(xi) * Δx approximates ∫ab f(x) dx
Δx = (b - a) / n
xi = a + i * Δx
Integral evaluation with substitution

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus