Math Problem Statement

The following limit represents the definite integral ∫baf(x)dx for some real numbers a and b, and an integrable function f:

limn→∞∑i=1n4in2(2+4in)

a) Find Δx and xi from this expression and deduce the values of a and b, and the function f.

FORMATTING: Your expression for Δx should be an expression involving n.  Your expression for xi  should be an expression involving the index i and n. The numbers a and b are real numbers, and f(x) should be a function of x. Write your answer in the form [Δx,xi,a,b,f(x)] including the square brackets [ ] and commas (,) between each term.** Strict* scientific calculator notation is required in your answer, meaning in particular *** for multiplication**, e.g. 2x must be written* 2*xand (x+1)(x+2) must be written (x+1)*(x+2).

Answer: [Δx,xi,a,b,f(x)]=

b) Compute the value of the limit above. Give your answer with an accuracy of four decimal places.

Answer: limn→∞∑i=1n4in2(2+4in)=

Solution

To solve this, we need to recognize that the sum resembles a Riemann sum for a definite integral of the form abf(x)dx\int_a^b f(x) \, dx.

Part (a)

The general form of a Riemann sum for abf(x)dx\int_a^b f(x) \, dx is: limni=1nf(xi)Δx\lim_{n \to \infty} \sum_{i=1}^n f(x_i) \, \Delta x where:

  • Δx=ban\Delta x = \frac{b - a}{n},
  • xi=a+iΔxx_i = a + i \, \Delta x.

In our case, the expression inside the sum, 4in2(2+4in)\frac{4i}{n^2(2 + \frac{4i}{n})}, suggests:

  1. Δx\Delta x is likely 1n\frac{1}{n}, as it is the term dividing f(x)f(x).
  2. xix_i is represented by 4in\frac{4i}{n}, because this term varies with ii and scales with 1n\frac{1}{n}.

Given this, we deduce:

  • Δx=1n\Delta x = \frac{1}{n},
  • xi=4inx_i = \frac{4i}{n}.

Next, we identify aa, bb, and f(x)f(x):

  • Since xi=4inx_i = \frac{4i}{n} spans from 41n0\frac{4 \cdot 1}{n} \approx 0 to 4nn=4\frac{4 \cdot n}{n} = 4, we conclude a=0a = 0 and b=4b = 4.
  • The function f(x)f(x) must match the form inside the sum, with x=4inx = \frac{4i}{n} substituted. Rewriting 4in2(2+4in)\frac{4i}{n^2(2 + \frac{4i}{n})} in terms of x=4inx = \frac{4i}{n}, we get: f(x)=x2+x.f(x) = \frac{x}{2 + x}.

Thus, we have: [ \text{Answer to (a): } [\Delta x, x_i, a, b, f(x)] = \left[ \frac{1}{n}, \frac{4*i}{n}, 0, 4, \frac{x}{2 + x} \right]. ]

Part (b)

Now, we compute the value of the limit, which corresponds to the definite integral: 04x2+xdx.\int_0^4 \frac{x}{2 + x} \, dx.

To evaluate this integral:

  1. Substitute u=2+xdu=dxu = 2 + x \Rightarrow du = dx.
  2. When x=0x = 0, u=2u = 2; and when x=4x = 4, u=6u = 6.
  3. This transforms the integral to: 26u2udu=26(12u)du.\int_2^6 \frac{u - 2}{u} \, du = \int_2^6 \left( 1 - \frac{2}{u} \right) du.
  4. Now, integrate term-by-term: 261du262udu=[u2lnu]26.\int_2^6 1 \, du - \int_2^6 \frac{2}{u} \, du = \left[ u - 2 \ln |u| \right]_2^6.
  5. Plugging in the limits: (62ln6)(22ln2)=42ln3.\left( 6 - 2 \ln 6 \right) - \left( 2 - 2 \ln 2 \right) = 4 - 2 \ln 3.
  6. Calculating 42ln34 - 2 \ln 3 to four decimal places: 42ln31.8028.4 - 2 \ln 3 \approx 1.8028.

Thus, the answer for (b) is: Answer: limni=1n4in2(2+4in)=1.8028.\text{Answer: } \lim_{n \to \infty} \sum_{i=1}^n \frac{4i}{n^2(2 + \frac{4i}{n})} = 1.8028.

Let me know if you need more details or have any questions.

Here are some related questions to expand on this concept:

  1. How can we identify the limits of integration in other Riemann sum problems?
  2. What techniques can we use for more complicated integrals involving logarithms?
  3. Why does the choice of xix_i matter in Riemann sums?
  4. What is the significance of Δx\Delta x in terms of partitioning the interval?
  5. How does substitution simplify complex integrals?

Tip: To recognize integrable functions in Riemann sums, match terms in the sum to an integral's format, then identify Δx\Delta x and xix_i accordingly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Riemann Sums
Limits

Formulas

Riemann sum formula: ∑ f(xi) * Δx approximates ∫ab f(x) dx
Δx = (b - a) / n
xi = a + i * Δx
Integral evaluation with substitution

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus