Math Problem Statement

evaluate the integral on c for y ds, where C is the parabola r = <2t^2, 2t? for -3 <= t <= 0

Solution

To evaluate the integral of ydsy \, ds over the curve CC parameterized by r(t)=2t2,2t\mathbf{r}(t) = \langle 2t^2, 2t \rangle for 3t0-3 \leq t \leq 0, we proceed as follows:

Step 1: Recall the formula

The line integral of ydsy \, ds is given by: Cyds\int_C y \, ds where ds=(dxdt)2+(dydt)2dtds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt.

Step 2: Compute derivatives of x(t)x(t) and y(t)y(t)

From the parameterization r(t)=2t2,2t\mathbf{r}(t) = \langle 2t^2, 2t \rangle, we have: x(t)=2t2andy(t)=2t.x(t) = 2t^2 \quad \text{and} \quad y(t) = 2t. The derivatives are: dxdt=4tanddydt=2.\frac{dx}{dt} = 4t \quad \text{and} \quad \frac{dy}{dt} = 2.

Step 3: Compute dsds

Using the formula for dsds: ds=(dxdt)2+(dydt)2dt,ds = \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt, we substitute the derivatives: ds=(4t)2+22dt=16t2+4dt=24t2+1dt.ds = \sqrt{(4t)^2 + 2^2} \, dt = \sqrt{16t^2 + 4} \, dt = 2\sqrt{4t^2 + 1} \, dt.

Step 4: Express the integral

The integral becomes: Cyds=30y(t)ds=302t24t2+1dt.\int_C y \, ds = \int_{-3}^{0} y(t) \cdot ds = \int_{-3}^{0} 2t \cdot 2\sqrt{4t^2 + 1} \, dt. Simplify: Cyds=430t4t2+1dt.\int_C y \, ds = 4 \int_{-3}^{0} t \sqrt{4t^2 + 1} \, dt.

Step 5: Solve the integral

Let u=4t2+1u = 4t^2 + 1, so that du=8tdtdu = 8t \, dt. This substitution gives: tdt=18du.t \, dt = \frac{1}{8} \, du. When t=3t = -3, u=4(3)2+1=37u = 4(-3)^2 + 1 = 37.
When t=0t = 0, u=4(0)2+1=1u = 4(0)^2 + 1 = 1.

The integral becomes: 430t4t2+1dt=4371u18du.4 \int_{-3}^{0} t \sqrt{4t^2 + 1} \, dt = 4 \int_{37}^{1} \sqrt{u} \cdot \frac{1}{8} \, du. Simplify: =12371u1/2du.= \frac{1}{2} \int_{37}^{1} u^{1/2} \, du.

Step 6: Compute the antiderivative

The antiderivative of u1/2u^{1/2} is: u1/2du=23u3/2.\int u^{1/2} \, du = \frac{2}{3} u^{3/2}. Evaluate: 12371u1/2du=12[23u3/2]371.\frac{1}{2} \int_{37}^{1} u^{1/2} \, du = \frac{1}{2} \left[ \frac{2}{3} u^{3/2} \right]_{37}^{1}. Simplify: =13[u3/2]371=13(13/2373/2).= \frac{1}{3} \left[ u^{3/2} \right]_{37}^{1} = \frac{1}{3} \left( 1^{3/2} - 37^{3/2} \right).

Step 7: Final result

Cyds=13(1373/2).\int_C y \, ds = \frac{1}{3} \left( 1 - 37^{3/2} \right).

This is the evaluated integral. Let me know if you have questions or need clarification!


Expanding Understanding:

  1. What is the geometric meaning of the integral Cyds\int_C y \, ds?
  2. How would the calculation differ if CC was parameterized in a different direction?
  3. How do you compute u3/2\sqrt{u}^{3/2} for other complex cases?
  4. Could the substitution method change for other parabola-like curves?
  5. How is this integral related to physical concepts like arc length or mass distribution?

Tip: Always verify parameter limits when performing a substitution to ensure consistency with the original integral bounds.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Line Integrals
Parameterization of Curves
Substitution in Integrals

Formulas

ds = √((dx/dt)^2 + (dy/dt)^2) dt
Integral of y ds = ∫_C y ds

Theorems

Fundamental Theorem of Calculus for Line Integrals
Substitution Method in Definite Integrals

Suitable Grade Level

College Level