Math Problem Statement

Evaluate the line integral, where C is the given curve. ∫C xy ds, C:x = t2, y = 2t, 0 ≤ t ≤ 5

Solution

To evaluate the line integral Cxyds\int_C xy \, ds where the curve CC is given by the parametric equations x=t2x = t^2 and y=2ty = 2t for 0t50 \le t \le 5, we will follow these steps:

  1. Parameterize the curve: The curve is already parameterized with x(t)=t2x(t) = t^2 and y(t)=2ty(t) = 2t.
  2. Compute dsds: ds=(dxdt)2+(dydt)2dtds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.
  3. Substitute xx and yy into the integral: Replace xx and yy with their parameterized forms.
  4. Evaluate the integral.

Let's go through these steps one by one.

Step 1: Parameterize the Curve

The curve is parameterized as: x(t)=t2x(t) = t^2 y(t)=2ty(t) = 2t with tt ranging from 0 to 5.

Step 2: Compute dsds

First, we find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}: dxdt=ddt(t2)=2t\frac{dx}{dt} = \frac{d}{dt}(t^2) = 2t dydt=ddt(2t)=2\frac{dy}{dt} = \frac{d}{dt}(2t) = 2

Then, we compute dsds: ds=(dxdt)2+(dydt)2dt=(2t)2+22dt=4t2+4dt=4(t2+1)dt=2t2+1dtds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt = \sqrt{(2t)^2 + 2^2} \, dt = \sqrt{4t^2 + 4} \, dt = \sqrt{4(t^2 + 1)} \, dt = 2\sqrt{t^2 + 1} \, dt

Step 3: Substitute xx and yy into the Integral

We substitute x=t2x = t^2 and y=2ty = 2t into the integral: Cxyds=05(t2)(2t)2t2+1dt=052t32t2+1dt=405t3t2+1dt\int_C xy \, ds = \int_0^5 (t^2)(2t) \cdot 2\sqrt{t^2 + 1} \, dt = \int_0^5 2t^3 \cdot 2\sqrt{t^2 + 1} \, dt = 4 \int_0^5 t^3 \sqrt{t^2 + 1} \, dt

Step 4: Evaluate the Integral

To evaluate the integral 405t3t2+1dt4 \int_0^5 t^3 \sqrt{t^2 + 1} \, dt, we use the substitution method. Let u=t2+1u = t^2 + 1. Then du=2tdtdu = 2t \, dt or dt=du2tdt = \frac{du}{2t}.

When t=0t = 0, u=1u = 1. When t=5t = 5, u=26u = 26.

Substitute uu and dtdt into the integral: 405t3t2+1dt=4126t3udu2t4 \int_0^5 t^3 \sqrt{t^2 + 1} \, dt = 4 \int_1^{26} t^3 \sqrt{u} \cdot \frac{du}{2t} =4126t2u2du= 4 \int_1^{26} \frac{t^2 \sqrt{u}}{2} \, du

Since t2=u1t^2 = u - 1, we have: 4126(u1)u2du4 \int_1^{26} \frac{(u - 1) \sqrt{u}}{2} \, du =2126(u1)udu= 2 \int_1^{26} (u - 1) \sqrt{u} \, du =2126(u3/2u1/2)du= 2 \int_1^{26} (u^{3/2} - u^{1/2}) \, du

Now, integrate term by term: 2[25u5/223u3/2]1262 \left[ \frac{2}{5} u^{5/2} - \frac{2}{3} u^{3/2} \right]_1^{26} =2(25(26)5/223(26)3/2(25(1)5/223(1)3/2))= 2 \left( \frac{2}{5} (26)^{5/2} - \frac{2}{3} (26)^{3/2} - \left( \frac{2}{5} (1)^{5/2} - \frac{2}{3} (1)^{3/2} \right) \right) =2(25(26)5/223(26)3/225+23)= 2 \left( \frac{2}{5} (26)^{5/2} - \frac{2}{3} (26)^{3/2} - \frac{2}{5} + \frac{2}{3} \right)

Simplify the constants: =2(25(26)5/223(26)3/2+115)= 2 \left( \frac{2}{5} (26)^{5/2} - \frac{2}{3} (26)^{3/2} + \frac{1}{15} \right)

Finally, calculate the numerical values: 263/2=262626^{3/2} = 26 \sqrt{26} 265/2=26226=6762626^{5/2} = 26^2 \sqrt{26} = 676 \sqrt{26}

So, =2(25×6762623×2626+115)= 2 \left( \frac{2}{5} \times 676 \sqrt{26} - \frac{2}{3} \times 26 \sqrt{26} + \frac{1}{15} \right) =2(135252652326+115)= 2 \left( \frac{1352}{5} \sqrt{26} - \frac{52}{3} \sqrt{26} + \frac{1}{15} \right) =2(270.42617.3326+115)= 2 \left( 270.4 \sqrt{26} - 17.33 \sqrt{26} + \frac{1}{15} \right) =2(253.0726+115)= 2 \left( 253.07 \sqrt{26} + \frac{1}{15} \right)

Thus, the evaluated line integral is: Cxyds=2(253.0726+115)\int_C xy \, ds = 2 \left( 253.07 \sqrt{26} + \frac{1}{15} \right)

If you have any questions or need further details, please let me know. Here are five more questions you might be interested in:

  1. How do you evaluate a line integral for a vector field?
  2. What is the divergence theorem and how is it used in vector calculus?
  3. Can you explain Green's theorem and its applications?
  4. How do you solve surface integrals over a given surface?
  5. What are some practical applications of line integrals in physics and engineering?

Tip: When evaluating integrals, always consider if a substitution or change of variables can simplify the computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line integrals
Parametric curves
Integration techniques

Formulas

Line integral formula
Parametric curve equations
Substitution method for integrals

Theorems

-

Suitable Grade Level

Advanced undergraduate