Math Problem Statement

Evaluate the following integral using trigonometric substitution.

Integral from nothing to nothing StartFraction 11 x squared dx Over left parenthesis 81 plus x squared right parenthesis squared EndFraction∫11x2 dx81+x22

Question content area bottom

Part 1

What substitution will be the most helpful for evaluating this​ integral?

A.

xequals=9 secant theta9secθ

B.

xequals=9 tangent theta9tanθ

C.

xequals=9 sine theta9sinθ

Part 2

Rewrite the given integral using this substitution. and evaluate.

Solution

To solve the integral 11x2dx(81+x2)2\int \frac{11x^2 \, dx}{(81 + x^2)^2}, we can use trigonometric substitution.

Part 1: Choosing the Appropriate Trigonometric Substitution

The expression 81+x281 + x^2 suggests a trigonometric substitution that matches the form a2+x2a^2 + x^2, where a=9a = 9. In such cases, the appropriate substitution is:

x=9tan(θ)x = 9 \tan(\theta)

This is because tan(θ)\tan(\theta) works well with integrals of the form a2+x2a^2 + x^2, simplifying the square terms.

Thus, the correct substitution is Option B: x=9tan(θ)x = 9 \tan(\theta).

Part 2: Rewrite the Integral Using the Substitution

With x=9tan(θ)x = 9 \tan(\theta), we now need to compute the following:

  • Derivative: dx=9sec2(θ)dθdx = 9 \sec^2(\theta) \, d\theta
  • x2=81tan2(θ)x^2 = 81 \tan^2(\theta)
  • 81+x2=81+81tan2(θ)=81sec2(θ)81 + x^2 = 81 + 81 \tan^2(\theta) = 81 \sec^2(\theta)

Now, rewrite the integral:

11x2dx(81+x2)2=11(81tan2(θ))9sec2(θ)dθ(81sec2(θ))2\int \frac{11x^2 \, dx}{(81 + x^2)^2} = \int \frac{11(81 \tan^2(\theta)) \cdot 9 \sec^2(\theta) \, d\theta}{(81 \sec^2(\theta))^2}

Simplifying the integral:

=1181tan2(θ)9sec2(θ)dθ812sec4(θ)= \int \frac{11 \cdot 81 \tan^2(\theta) \cdot 9 \sec^2(\theta) \, d\theta}{81^2 \sec^4(\theta)}

=119tan2(θ)81sec2(θ)dθ= \int \frac{11 \cdot 9 \tan^2(\theta)}{81 \sec^2(\theta)} \, d\theta

=99tan2(θ)81sec2(θ)dθ= \int \frac{99 \tan^2(\theta)}{81 \sec^2(\theta)} \, d\theta

=9981tan2(θ)sec2(θ)dθ= \frac{99}{81} \int \frac{\tan^2(\theta)}{\sec^2(\theta)} \, d\theta

Since tan2(θ)sec2(θ)=sin2(θ)\frac{\tan^2(\theta)}{\sec^2(\theta)} = \sin^2(\theta), we now have:

9981sin2(θ)dθ\frac{99}{81} \int \sin^2(\theta) \, d\theta

Use the identity sin2(θ)=1cos(2θ)2\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}:

99811cos(2θ)2dθ\frac{99}{81} \int \frac{1 - \cos(2\theta)}{2} \, d\theta

This becomes:

998112(1cos(2θ))dθ\frac{99}{81} \cdot \frac{1}{2} \int (1 - \cos(2\theta)) \, d\theta

=99162(θsin(2θ)2)= \frac{99}{162} \left( \theta - \frac{\sin(2\theta)}{2} \right)

Back-Substitution

To finish the evaluation, we need to revert the substitution x=9tan(θ)x = 9 \tan(\theta). From x=9tan(θ)x = 9 \tan(\theta), we have θ=tan1(x9)\theta = \tan^{-1}\left(\frac{x}{9}\right). Also, using the identity sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2 \sin(\theta) \cos(\theta), we can express sin(2θ)\sin(2\theta) in terms of xx.

Thus, the evaluated integral is:

99162(tan1(x9)x81+x2)+C\frac{99}{162} \left( \tan^{-1}\left(\frac{x}{9}\right) - \frac{x}{81 + x^2} \right) + C

Final Answer:

99162(tan1(x9)x81+x2)+C\frac{99}{162} \left( \tan^{-1}\left(\frac{x}{9}\right) - \frac{x}{81 + x^2} \right) + C

Would you like more details on any specific part of this solution? Here are five related questions:

  1. How do we choose trigonometric substitutions for different types of integrals?
  2. What is the derivation of the identity sin2(θ)=1cos(2θ)2\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}?
  3. How do we handle back-substitution in trigonometric substitution problems?
  4. Can trigonometric substitutions be used for other integrals, such as those involving x2a2\sqrt{x^2 - a^2}?
  5. Why does the integral simplify when using trigonometric identities?

Tip: When performing trigonometric substitution, always check if the final result can be simplified further using trigonometric identities or algebraic manipulation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Substitution
Integration

Formulas

x = 9tan(θ)
dx = 9sec^2(θ) dθ
sin^2(θ) = (1 - cos(2θ)) / 2

Theorems

Trigonometric Substitution Theorem
Pythagorean Identity: sec^2(θ) = 1 + tan^2(θ)

Suitable Grade Level

College Calculus