Math Problem Statement

solve it correctly

Use the given transformation to evaluate the integral \( \iint_R 2 \frac{x - 4y}{5x - y} \, dA \), where \( R \) is the parallelogram enclosed by the lines \( x - 4y = 0 \), \( x - 4y = 1 \), \( 5x - y = 1 \), and \( 5x - y = 2 \); \( u = x - 4y \), \( v = 5x - y \).

Solution

To solve the given integral using the specified transformation, we will follow these steps:

Problem Statement

Evaluate: R2x4y5xydA,\iint_R 2 \frac{x - 4y}{5x - y} \, dA, where RR is the parallelogram enclosed by the lines x4y=0x - 4y = 0, x4y=1x - 4y = 1, 5xy=15x - y = 1, and 5xy=25x - y = 2. We use the transformation: u=x4y,v=5xy.u = x - 4y, \quad v = 5x - y.

Solution

  1. Express xx and yy in Terms of uu and vv: We have: u=x4yandv=5xy.u = x - 4y \quad \text{and} \quad v = 5x - y. Solve this system for xx and yy in terms of uu and vv: 5u=5x20yv5u=19yy=v5u19.5u = 5x - 20y \quad \Rightarrow \quad v - 5u = 19y \quad \Rightarrow \quad y = \frac{v - 5u}{19}. Substitute yy back into u=x4yu = x - 4y to solve for xx: x=u+4(v5u19)=9u+4v19.x = u + 4\left(\frac{v - 5u}{19}\right) = \frac{9u + 4v}{19}.

  2. Compute the Jacobian Determinant (x,y)(u,v)\frac{\partial (x, y)}{\partial (u, v)}: We have: x=9u+4v19,y=v5u19.x = \frac{9u + 4v}{19}, \quad y = \frac{v - 5u}{19}. Find the partial derivatives: xu=919,xv=419,\frac{\partial x}{\partial u} = \frac{9}{19}, \quad \frac{\partial x}{\partial v} = \frac{4}{19}, yu=519,yv=119.\frac{\partial y}{\partial u} = -\frac{5}{19}, \quad \frac{\partial y}{\partial v} = \frac{1}{19}. Then the Jacobian determinant is: J=919419519119=91(5)4192=9+20361=29361.J = \begin{vmatrix} \frac{9}{19} & \frac{4}{19} \\ -\frac{5}{19} & \frac{1}{19} \end{vmatrix} = \frac{9 \cdot 1 - (-5) \cdot 4}{19^2} = \frac{9 + 20}{361} = \frac{29}{361}.

  3. Transform the Integral: Using the transformation, the integral becomes: R2uv29361dudv.\iint_{R'} 2 \frac{u}{v} \cdot \frac{29}{361} \, du \, dv. Simplifying the integrand: R58u361vdudv.\iint_{R'} \frac{58u}{361v} \, du \, dv.

  4. Set up the New Limits for uu and vv: The region RR is bounded by u=0u = 0, u=1u = 1, v=1v = 1, and v=2v = 2. So the integral becomes: 120158u361vdudv.\int_1^2 \int_0^1 \frac{58u}{361v} \, du \, dv.

  5. Evaluate the Integral:

    • Integrate with respect to uu: 120158u361vdudv=1258361v[u22]01dv=1258361v12dv=1229361vdv.\int_1^2 \int_0^1 \frac{58u}{361v} \, du \, dv = \int_1^2 \frac{58}{361v} \left[ \frac{u^2}{2} \right]_0^1 \, dv = \int_1^2 \frac{58}{361v} \cdot \frac{1}{2} \, dv = \int_1^2 \frac{29}{361v} \, dv.
    • Integrate with respect to vv: 1229361vdv=29361[lnv]12=29361(ln2ln1)=29361ln2.\int_1^2 \frac{29}{361v} \, dv = \frac{29}{361} \left[ \ln v \right]_1^2 = \frac{29}{361} (\ln 2 - \ln 1) = \frac{29}{361} \ln 2.

Final Answer:

R2x4y5xydA=29ln2361.\iint_R 2 \frac{x - 4y}{5x - y} \, dA = \frac{29 \ln 2}{361}.

Would you like further details on any step, or have any questions?


Related Questions

  1. How would the solution change if a different transformation was used?
  2. What is the significance of the Jacobian in transformations?
  3. How can we verify the limits for the new region RR'?
  4. What are the general steps to transform a double integral?
  5. Why do we apply the logarithmic property in the final integration step?

Tip

Always verify the transformed region’s limits by plugging boundary conditions into the transformation equations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Multivariable Calculus
Transformation of Coordinates
Double Integrals
Jacobian Determinants

Formulas

Transformation of coordinates: \( u = x - 4y \), \( v = 5x - y \)
Jacobian determinant: \( J = \frac{\partial(x, y)}{\partial(u, v)} \)
Integral transformation: \( \iint_R f(x, y) \, dA = \iint_{R'} f(x(u, v), y(u, v)) \cdot |J| \, du \, dv \)

Theorems

Change of Variables Theorem for Double Integrals

Suitable Grade Level

University Level - Calculus II/III