Math Problem Statement

Evaluate the double integral \( \int_0^{\pi} \int_1^2 \left( 3r \cos \theta + r^2 \sin^2 \theta \right) \, dr \, d\theta \).

Solution

The integral shown in the image is:

0π12(3rcosθ+r2sin2θ)drdθ\int_0^{\pi} \int_1^2 \left( 3r \cos \theta + r^2 \sin^2 \theta \right) \, dr \, d\theta

To evaluate this double integral, let's proceed with the integration in two steps:

Step 1: Inner Integral with respect to rr

We have: 12(3rcosθ+r2sin2θ)dr\int_1^2 \left( 3r \cos \theta + r^2 \sin^2 \theta \right) \, dr

Breaking it down: =123rcosθdr+12r2sin2θdr= \int_1^2 3r \cos \theta \, dr + \int_1^2 r^2 \sin^2 \theta \, dr

  1. Evaluating 123rcosθdr\int_1^2 3r \cos \theta \, dr:

    =3cosθ12rdr=3cosθ[r22]12=3cosθ412=92cosθ= 3 \cos \theta \int_1^2 r \, dr = 3 \cos \theta \left[ \frac{r^2}{2} \right]_1^2 = 3 \cos \theta \cdot \frac{4 - 1}{2} = \frac{9}{2} \cos \theta

  2. Evaluating 12r2sin2θdr\int_1^2 r^2 \sin^2 \theta \, dr:

    =sin2θ12r2dr=sin2θ[r33]12=sin2θ813=73sin2θ= \sin^2 \theta \int_1^2 r^2 \, dr = \sin^2 \theta \left[ \frac{r^3}{3} \right]_1^2 = \sin^2 \theta \cdot \frac{8 - 1}{3} = \frac{7}{3} \sin^2 \theta

So, the result of the inner integral is: 92cosθ+73sin2θ\frac{9}{2} \cos \theta + \frac{7}{3} \sin^2 \theta

Step 2: Outer Integral with respect to θ\theta

Now we integrate this result with respect to θ\theta from 0 to π\pi: 0π(92cosθ+73sin2θ)dθ\int_0^{\pi} \left( \frac{9}{2} \cos \theta + \frac{7}{3} \sin^2 \theta \right) d\theta

We can split this into two integrals: =920πcosθdθ+730πsin2θdθ= \frac{9}{2} \int_0^{\pi} \cos \theta \, d\theta + \frac{7}{3} \int_0^{\pi} \sin^2 \theta \, d\theta

  1. Evaluating 0πcosθdθ\int_0^{\pi} \cos \theta \, d\theta:

    Since cosθ\cos \theta is an odd function over the symmetric interval [0,π][0, \pi], this integral evaluates to zero: 0πcosθdθ=0\int_0^{\pi} \cos \theta \, d\theta = 0

  2. Evaluating 0πsin2θdθ\int_0^{\pi} \sin^2 \theta \, d\theta:

    Using the identity sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}: 0πsin2θdθ=0π1cos(2θ)2dθ=120π1dθ120πcos(2θ)dθ\int_0^{\pi} \sin^2 \theta \, d\theta = \int_0^{\pi} \frac{1 - \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int_0^{\pi} 1 \, d\theta - \frac{1}{2} \int_0^{\pi} \cos(2\theta) \, d\theta

    The first part is: 120π1dθ=12π=π2\frac{1}{2} \int_0^{\pi} 1 \, d\theta = \frac{1}{2} \cdot \pi = \frac{\pi}{2}

    The second part is zero since cos(2θ)\cos(2\theta) over [0,π][0, \pi] integrates to zero: 120πcos(2θ)dθ=0\frac{1}{2} \int_0^{\pi} \cos(2\theta) \, d\theta = 0

    So, 0πsin2θdθ=π2\int_0^{\pi} \sin^2 \theta \, d\theta = \frac{\pi}{2}

Thus, the result of the outer integral is: 920+73π2=7π6\frac{9}{2} \cdot 0 + \frac{7}{3} \cdot \frac{\pi}{2} = \frac{7\pi}{6}

Final Answer:

0π12(3rcosθ+r2sin2θ)drdθ=7π6\int_0^{\pi} \int_1^2 \left( 3r \cos \theta + r^2 \sin^2 \theta \right) \, dr \, d\theta = \frac{7\pi}{6}

Would you like further explanation on any part of this solution?


Related Questions:

  1. How would the result change if the limits of rr were different?
  2. What if we had sinθ\sin \theta instead of sin2θ\sin^2 \theta in the integrand?
  3. How do we interpret this result in a physical context?
  4. Can this integral be evaluated using polar coordinates in a different way?
  5. What if the outer integral was from 00 to 2π2\pi instead?

Tip:

For integrals involving trigonometric functions squared, using identities like sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2} can simplify the calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integration
Trigonometric Integration
Polar Coordinates

Formulas

Integral of a product involving trigonometric and polynomial terms
Trigonometric identity: \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \)

Theorems

Properties of definite integrals
Basic trigonometric integrals

Suitable Grade Level

Undergraduate Calculus