Math Problem Statement

Evaluate the triple iterated integral \( \int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\cos \theta} \rho^2 \sin \varphi \cos \varphi \, d\rho \, d\theta \, d\varphi \).

Solution

To evaluate the triple iterated integral

0π/20π/40cosθρ2sinφcosφdρdθdφ,\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\cos \theta} \rho^2 \sin \varphi \cos \varphi \, d\rho \, d\theta \, d\varphi,

let's proceed by integrating in the order given: first with respect to ρ\rho, then θ\theta, and finally φ\varphi.

Step 1: Integrate with respect to ρ\rho

The inner integral is:

0cosθρ2sinφcosφdρ.\int_0^{\cos \theta} \rho^2 \sin \varphi \cos \varphi \, d\rho.

Since sinφcosφ\sin \varphi \cos \varphi is treated as a constant with respect to ρ\rho, this becomes:

sinφcosφ0cosθρ2dρ.\sin \varphi \cos \varphi \int_0^{\cos \theta} \rho^2 \, d\rho.

Now, integrate ρ2\rho^2 with respect to ρ\rho:

0cosθρ2dρ=[ρ33]0cosθ=(cosθ)33.\int_0^{\cos \theta} \rho^2 \, d\rho = \left[ \frac{\rho^3}{3} \right]_0^{\cos \theta} = \frac{(\cos \theta)^3}{3}.

Thus, the inner integral simplifies to:

0cosθρ2sinφcosφdρ=(cosθ)33sinφcosφ.\int_0^{\cos \theta} \rho^2 \sin \varphi \cos \varphi \, d\rho = \frac{(\cos \theta)^3}{3} \sin \varphi \cos \varphi.

Step 2: Integrate with respect to θ\theta

Now we have:

0π/20π/4(cosθ)33sinφcosφdθdφ.\int_0^{\pi/2} \int_0^{\pi/4} \frac{(\cos \theta)^3}{3} \sin \varphi \cos \varphi \, d\theta \, d\varphi.

This separates as:

130π/20π/4(cosθ)3sinφcosφdθdφ.\frac{1}{3} \int_0^{\pi/2} \int_0^{\pi/4} (\cos \theta)^3 \sin \varphi \cos \varphi \, d\theta \, d\varphi.

The integral with respect to θ\theta is:

0π/4(cosθ)3dθ.\int_0^{\pi/4} (\cos \theta)^3 \, d\theta.

To evaluate this, use the reduction formula for powers of cosine, or recognize it as a standard integral. The result of this integral is:

0π/4(cosθ)3dθ=3π32.\int_0^{\pi/4} (\cos \theta)^3 \, d\theta = \frac{3 \pi}{32}.

So the expression becomes:

133π320π/2sinφcosφdφ=π320π/2sinφcosφdφ.\frac{1}{3} \cdot \frac{3 \pi}{32} \int_0^{\pi/2} \sin \varphi \cos \varphi \, d\varphi = \frac{\pi}{32} \int_0^{\pi/2} \sin \varphi \cos \varphi \, d\varphi.

Step 3: Integrate with respect to φ\varphi

Now we have:

π320π/2sinφcosφdφ.\frac{\pi}{32} \int_0^{\pi/2} \sin \varphi \cos \varphi \, d\varphi.

Using the identity sinφcosφ=12sin(2φ)\sin \varphi \cos \varphi = \frac{1}{2} \sin(2\varphi), this becomes:

π32120π/2sin(2φ)dφ=π640π/2sin(2φ)dφ.\frac{\pi}{32} \cdot \frac{1}{2} \int_0^{\pi/2} \sin(2\varphi) \, d\varphi = \frac{\pi}{64} \int_0^{\pi/2} \sin(2\varphi) \, d\varphi.

Now, integrate sin(2φ)\sin(2\varphi):

0π/2sin(2φ)dφ=[12cos(2φ)]0π/2=12.\int_0^{\pi/2} \sin(2\varphi) \, d\varphi = \left[ -\frac{1}{2} \cos(2\varphi) \right]_0^{\pi/2} = \frac{1}{2}.

Thus, the entire expression becomes:

π6412=π128.\frac{\pi}{64} \cdot \frac{1}{2} = \frac{\pi}{128}.

Final Answer

0π/20π/40cosθρ2sinφcosφdρdθdφ=π128.\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\cos \theta} \rho^2 \sin \varphi \cos \varphi \, d\rho \, d\theta \, d\varphi = \frac{\pi}{128}.

Would you like more details on any of the steps?


  1. What is the reduction formula for powers of cosine?
  2. How can trigonometric identities simplify integration?
  3. Why do we change integration order in triple integrals sometimes?
  4. Can integration by parts be used here, and if so, how?
  5. How do we evaluate trigonometric integrals more efficiently?

Tip: When dealing with trigonometric integrals, always look for identities that can simplify products into single terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integral
Trigonometric Integration
Iterated Integrals

Formulas

\( \int_0^{\cos \theta} \rho^2 \, d\rho = \frac{(\cos \theta)^3}{3} \)
\( \sin \varphi \cos \varphi = \frac{1}{2} \sin(2\varphi) \)

Theorems

Trigonometric Identities

Suitable Grade Level

College-level Calculus