Math Problem Statement

Зроби таблицю з престановочним шифром з подвійним ключем. Слово: мережевий трафік, ключі: К1(5-3-1-2-4-6) і К2(2-3-1), за прикладом з фото

Зроби таблицю з престановочним шифром з подвійним ключем. Слово: мережевий трафік, ключі: К1(5-3-1-2-4-6) і К2(2-3-1), за прикладом з фото

Solution

To create a table with a double transposition cipher for the word "мережевий трафік" and keys K1(5-3-1-2-4-6) and K2(2-3-1), we can follow the example from the image. Here's the structured approach based on that example:

  1. Create a Matrix: First, construct a matrix with the given text, arranging it by rows in accordance with the length of key K1. Since K1 has six numbers, we will create rows with six columns.

  2. Fill the Matrix: Insert the text "мережевий трафік" into the matrix. If the text does not completely fill the matrix, you can add extra characters (like spaces or dummy characters) to ensure each cell is filled.

  3. Transpose by K1: Use K1(5-3-1-2-4-6) to reorder the columns in each row according to this key.

  4. Transpose by K2: After arranging rows according to K1, reorder rows based on K2(2-3-1).

Let's build this table step-by-step.

Step 1: Fill the Matrix

The text "мережевий трафік" has 14 characters, so we can complete it with two extra letters to fit into a 3x6 matrix.

Matrix (original):

123456
мереже
вийтра
фік___

Step 2: Reorder Columns by K1 (5-3-1-2-4-6)

Reorder columns based on K1. According to K1, the column order should be 5, 3, 1, 2, 4, 6.

531246
жрмеее
рйвита
_кфі__

Step 3: Reorder Rows by K2 (2-3-1)

Now, reorder rows according to K2, which specifies the order of rows as 2, 3, and 1.

531246
рйвита
_кфі__
жрмеее

Final Encoded Text

The encoded message is read column by column based on the final table.

Encoded Message: "рж _кфій втиа еее"

If you need further clarification on any step or would like to explore related concepts, feel free to ask!

Here are 5 questions to deepen understanding:

  1. What are the advantages of using double transposition over single transposition in ciphering?
  2. How can we decode a message encrypted with double transposition if we know the keys?
  3. How would the encryption change if K1 or K2 had different values?
  4. Can you describe a scenario where double transposition ciphers are beneficial in modern encryption?
  5. How do padding characters (like underscores) impact the strength of the encryption?

Tip: When performing transposition ciphers, always ensure the message fits perfectly into the matrix by adding padding if necessary. This makes the decoding process easier and the message structure more predictable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix arrangement
Double transposition cipher
Key-based column and row reordering

Formulas

Matrix filling rule: match text length to matrix dimensions
Column reordering using permutation keys
Row reordering using permutation keys

Theorems

Permutation theory for matrix manipulation

Suitable Grade Level

Grades 9-12