Math Problem Statement

solve step by step

Evaluate the double integral \( \iint_R |r - 1| \, dA \), where \( R \) is the circular disk \( r \leq 2 \) of radius 2 about the origin of the \( xy \)-plane.

Solution

To solve the given integral step by step, we are tasked with evaluating the double integral

Rr1dA\iint_R |r - 1| \, dA

where RR is the circular disk r2r \leq 2 in the xyxy-plane.

Step 1: Understand the Geometry

The region RR is a disk of radius 2 centered at the origin, and we are working with polar coordinates. Therefore:

  • The limits for rr are 00 to 22,
  • The limits for θ\theta are 00 to 2π2\pi.

The integrand r1|r - 1| introduces a piecewise behavior:

  • When 0r10 \leq r \leq 1, r1=1r|r - 1| = 1 - r,
  • When 1r21 \leq r \leq 2, r1=r1|r - 1| = r - 1.

Step 2: Set Up the Integral in Polar Coordinates

Using the area element dA=rdrdθdA = r \, dr \, d\theta, the integral is split as: Rr1dA=02π[01(1r)rdr+12(r1)rdr]dθ\iint_R |r - 1| \, dA = \int_0^{2\pi} \left[ \int_0^1 (1 - r) r \, dr + \int_1^2 (r - 1) r \, dr \right] d\theta

Step 3: Solve the Inner Integrals

First Integral (0r10 \leq r \leq 1):

01(1r)rdr=01(rr2)dr\int_0^1 (1 - r) r \, dr = \int_0^1 (r - r^2) \, dr Split the terms and integrate: [ \int_0^1 r , dr = \left[\frac{r^2}{2}\right]_0^1 = \frac{1}{2}, \quad \int_0^1 r^2 , dr = \left[\frac{r^3}{3}\right]_0^1 = \frac{1}{3} ] So: 01(1r)rdr=1213=16.\int_0^1 (1 - r) r \, dr = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.

Second Integral (1r21 \leq r \leq 2):

12(r1)rdr=12(r2r)dr\int_1^2 (r - 1) r \, dr = \int_1^2 (r^2 - r) \, dr Split the terms and integrate: [ \int_1^2 r^2 , dr = \left[\frac{r^3}{3}\right]_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}, \quad \int_1^2 r , dr = \left[\frac{r^2}{2}\right]_1^2 = 2 - \frac{1}{2} = \frac{3}{2}. ] So: 12(r1)rdr=7332=14696=56.\int_1^2 (r - 1) r \, dr = \frac{7}{3} - \frac{3}{2} = \frac{14}{6} - \frac{9}{6} = \frac{5}{6}.

Step 4: Combine the Results

Now combine both parts of the integral: 02π[16+56]dθ=02π66dθ=02π1dθ.\int_0^{2\pi} \left[ \frac{1}{6} + \frac{5}{6} \right] d\theta = \int_0^{2\pi} \frac{6}{6} \, d\theta = \int_0^{2\pi} 1 \, d\theta.

Step 5: Solve the Outer Integral

The outer integral is: 02π1dθ=θ02π=2π.\int_0^{2\pi} 1 \, d\theta = \theta \Big|_0^{2\pi} = 2\pi.

Final Answer:

The value of the integral is: 2π.\boxed{2\pi}.

Let me know if you want further clarifications or additional questions to practice on!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double integrals
Polar coordinates
Piecewise functions

Formulas

Area element in polar coordinates: \( dA = r \, dr \, d\theta \)
Definite integral of polynomial functions

Theorems

Piecewise integration

Suitable Grade Level

Undergraduate (Calculus II or III)