Math Problem Statement

Q3. Evaluate ∬ 𝑅 ( 𝑥 + 𝑦 )

𝑑 𝐴 ∬ R ​ (x+y)dA Given: 𝑅 R is the region inside x^2+y^2=4 in the first quadrant.

Solution

To evaluate the double integral R(x+y)dA\iint_{R} (x+y) \, dA where RR is the region inside x2+y2=4x^2 + y^2 = 4 in the first quadrant, we can proceed asTo evaluate the double integral

R(x+y)dA\iint_{R} (x+y) \, dA

where RR is the region inside x2+y2=4x^2 + y^2 = 4 in the first quadrant, we can proceed as follows:

  1. Set up the region in polar coordinates: The given region is the quarter circle of radius 2 in the first quadrant. In polar coordinates, x=rcosθx = r\cos\theta and ( y =To evaluate the double integral

R(x+y)dA\iint_{R} (x+y) \, dA

where RR is the region inside x2+y2=4x^2 + y^2 = 4 in the first quadrant, we can proceed as follows:

  1. Convert to polar coordinates: The region RR is a quarter circle of radius 2 in the first quadrant. In polar coordinates, x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta, and the differential area element dA=rdrdθdA = r \, dr \, d\theta.

  2. Set up the limits of integration: In the first quadrant, θ\theta ranges from 00 to π2\frac{\pi}{2}, and rr ranges from 00 to 22.

  3. Transform the integrand: Substitute xx and yy with their polar coordinates expressions: x+y=rcosθ+rsinθ=r(cosθ+sinθ)x + y = r \cos \theta + r \sin \theta = r (\cos \theta + \sin \theta)

  4. Set up the integral in polar coordinates: R(x+y)dA=0π202r(cosθ+sinθ)rdrdθ\iint_{R} (x + y) \, dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r (\cos \theta + \sin \theta) \cdot r \, dr \, d\theta =0π202r2(cosθ+sinθ)drdθ= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^2 (\cos \theta + \sin \theta) \, dr \, d\theta

  5. Evaluate the inner integral: 02r2(cosθ+sinθ)dr=(cosθ+sinθ)02r2dr\int_{0}^{2} r^2 (\cos \theta + \sin \theta) \, dr = (\cos \theta + \sin \theta) \int_{0}^{2} r^2 \, dr =(cosθ+sinθ)[r33]02= (\cos \theta + \sin \theta) \left[ \frac{r^3}{3} \right]_{0}^{2} =(cosθ+sinθ)[83]= (\cos \theta + \sin \theta) \left[ \frac{8}{3} \right] =83(cosθ+sinθ)= \frac{8}{3} (\cos \theta + \sin \theta)

  6. Evaluate the outer integral: 0π283(cosθ+sinθ)dθ\int_{0}^{\frac{\pi}{2}} \frac{8}{3} (\cos \theta + \sin \theta) \, d\theta =83[0π2cosθdθ+0π2sinθdθ]= \frac{8}{3} \left[ \int_{0}^{\frac{\pi}{2}} \cos \theta \, d\theta + \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta \right] =83[sinθ0π2cosθ0π2]= \frac{8}{3} \left[ \sin \theta \Big|_{0}^{\frac{\pi}{2}} - \cos \theta \Big|_{0}^{\frac{\pi}{2}} \right] =83[sin(π2)sin(0)+cos(0)cos(π2)]= \frac{8}{3} \left[ \sin \left( \frac{\pi}{2} \right) - \sin (0) + \cos (0) - \cos \left( \frac{\pi}{2} \right) \right] =83[10+10]= \frac{8}{3} \left[ 1 - 0 + 1 - 0 \right] =83×2=163= \frac{8}{3} \times 2 = \frac{16}{3}

Therefore, the value of the double integral is

163\boxed{\frac{16}{3}}

Would you like more details or have any questions about this solution?

Here are 8 additional questions to expand on this topic:

  1. How do you convert rectangular coordinates to polar coordinates?
  2. What is the geometric interpretation of the given region RR?
  3. How does the Jacobian determinant factor into converting to polar coordinates?
  4. What are other common applications of double integrals in polar coordinates?
  5. How would the integral change if the region was the full circle instead of the quarter circle?
  6. Can this problem be solved using symmetry arguments? How?
  7. What is the physical interpretation of the integral R(x+y)dA\iint_{R} (x+y) \, dA?
  8. How does changing the limits of integration affect the outcome of the integral?

Tip: When converting integrals to polar coordinates, always remember to include the Jacobian determinant rr when transforming the area element dAdA.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double integrals
Polar coordinates
Integration techniques

Formulas

Polar coordinates transformation
Area element in polar coordinates

Theorems

-

Suitable Grade Level

Advanced undergraduate