Math Problem Statement

Use the Divergence Theorem to calculate the flux of F across S , where F=zi+yj+zxk and S is the surface of the tetrahedron enclosed by the coordinate planes and the plane x2+y3+z4=1

∫∫SF⋅ dS=

Solution

To solve this problem using the Divergence Theorem, we proceed with the following steps:

Divergence Theorem:

The Divergence Theorem states that: SFdS=V(F)dV,\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V (\nabla \cdot \mathbf{F}) \, dV, where SS is the closed surface bounding the volume VV, and F\nabla \cdot \mathbf{F} is the divergence of F\mathbf{F}.


1. Given Data

  • Vector field: F=zi+yj+zxk\mathbf{F} = z\mathbf{i} + y\mathbf{j} + zx\mathbf{k}.
  • Surface SS: The tetrahedron bounded by the coordinate planes and the plane x/2+y/3+z/4=1x/2 + y/3 + z/4 = 1 (rewritten as 6x+4y+3z=126x + 4y + 3z = 12).

2. Compute Divergence of F\mathbf{F}

F=zi+yj+zxk.\mathbf{F} = z\mathbf{i} + y\mathbf{j} + zx\mathbf{k}. F=x(z)+y(y)+z(zx).\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(z) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(zx). F=0+1+x=x+1.\nabla \cdot \mathbf{F} = 0 + 1 + x = x + 1.


3. Volume of the Tetrahedron

The tetrahedron is defined by the plane 6x+4y+3z=126x + 4y + 3z = 12 and the coordinate planes x=0x=0, y=0y=0, and z=0z=0.

  • To find the vertices, determine the intersection points:
    1. xx-intercept: (2,0,0)(2, 0, 0) (set y=0,z=0y=0, z=0).
    2. yy-intercept: (0,3,0)(0, 3, 0) (set x=0,z=0x=0, z=0).
    3. zz-intercept: (0,0,4)(0, 0, 4) (set x=0,y=0x=0, y=0).
    4. Origin: (0,0,0)(0, 0, 0).

The volume VV of the tetrahedron is given by: V=16Base AreaHeight.V = \frac{1}{6} \cdot \text{Base Area} \cdot \text{Height}. Here, the base is the triangle in the xyxy-plane with vertices (0,0),(2,0),(0,3)(0,0), (2,0), (0,3), and the height is the zz-intercept 44.

  • Area of base triangle: Area=12baseheight=1223=3.\text{Area} = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 2 \cdot 3 = 3.

  • Volume: V=1334=4.V = \frac{1}{3} \cdot 3 \cdot 4 = 4.


4. Apply the Divergence Theorem

Using F=x+1\nabla \cdot \mathbf{F} = x + 1, the flux is: SFdS=V(x+1)dV.\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V (x + 1) \, dV.

We compute: V(x+1)dV=VxdV+V1dV.\iiint_V (x + 1) \, dV = \iiint_V x \, dV + \iiint_V 1 \, dV.

(a) Compute VxdV\iiint_V x \, dV

The volume is bounded by 0x20 \leq x \leq 2, 0y32(1x2)0 \leq y \leq \frac{3}{2}(1 - \frac{x}{2}), and 0z4(1x2y3)0 \leq z \leq 4(1 - \frac{x}{2} - \frac{y}{3}).

The integral is: VxdV=02032(1x2)04(1x2y3)xdzdydx.\iiint_V x \, dV = \int_0^2 \int_0^{\frac{3}{2}(1 - \frac{x}{2})} \int_0^{4(1 - \frac{x}{2} - \frac{y}{3})} x \, dz \, dy \, dx.

  • 04(1x2y3)xdz=x4(1x2y3)=4x(1x2y3).\int_0^{4(1 - \frac{x}{2} - \frac{y}{3})} x \, dz = x \cdot 4(1 - \frac{x}{2} - \frac{y}{3}) = 4x(1 - \frac{x}{2} - \frac{y}{3}).

Now integrate with respect to yy and xx.

(b) Compute V1dV\iiint_V 1 \, dV

V1dV=Volume of the tetrahedron=4.\iiint_V 1 \, dV = \text{Volume of the tetrahedron} = 4.


Final Flux Calculation

Combine the results of both integrals to get the total flux: SFdS.\iint_S \mathbf{F} \cdot d\mathbf{S}.

Let me know if you'd like detailed evaluations of the integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Divergence Theorem
Triple Integration
Volume of a Tetrahedron

Formulas

Divergence Theorem: ∫∫_S (F ⋅ dS) = ∫∫∫_V (∇ ⋅ F) dV
Divergence of F: ∇ ⋅ F = ∂F_x/∂x + ∂F_y/∂y + ∂F_z/∂z
Volume of a Tetrahedron: V = (1/6) × Base Area × Height

Theorems

Divergence Theorem

Suitable Grade Level

College-Level Mathematics or Advanced Placement (AP) Calculus