Math Problem Statement
This problem will illustrate the divergence theorem by computing the outward flux of the vector field F(x,y,z)=1xi+5yj+4zkF(x,y,z)=1xi+5yj+4zk across the boundary of the right rectangular prism: −5≤x≤6,−3≤y≤5,−5≤z≤6−5≤x≤6,−3≤y≤5,−5≤z≤6 oriented outwards using a surface integral and a triple integral over the solid bounded by rectangular prism. Note: The vectors in this field point outwards from the origin, so we would expect the flux across each face of the prism to be positive.
Part 1 - Using a Surface Integral First we parameterize the six faces using 0≤s≤10≤s≤1 and 0≤t≤10≤t≤1:
The face with z = -5 : σ1=(x1(s),y1(t),z1(s,t))σ1=(x1(s),y1(t),z1(s,t)) x1(s)=x1(s)= y1(t)=y1(t)= z1(s,t)=−5z1(s,t)=−5
The face with z = 6 : σ2=(x2(s),y2(t),z2(s,t))σ2=(x2(s),y2(t),z2(s,t)) x2(s)=x2(s)= y2(t)=y2(t)= z2(s,t)=6z2(s,t)=6
The face with x = -5 : σ3=x3(s,t),y3(s),z3(t))σ3=x3(s,t),y3(s),z3(t)) x3(s,t)=−5x3(s,t)=−5 y3(s)=y3(s)= z3(t)=z3(t)=
The face with x = 6 : σ4=(x4(s,t),y4(s),z4(t))σ4=(x4(s,t),y4(s),z4(t)) x4(s,t)=6x4(s,t)=6 y4(s)=y4(s)= z4(t)=z4(t)=
The face with y = -3 : σ5=(x5(s),y5(s,t),z5(t))σ5=(x5(s),y5(s,t),z5(t)) x5(s)=x5(s)= y5(s,t)=−3y5(s,t)=−3 z5(t)=z5(t)=
The face with y = 5 : σ6=(x6(s),y6(s,t),z6(t))σ6=(x6(s),y6(s,t),z6(t)) x6(s)=x6(s)= y6(s,t)=5y6(s,t)=5 z6(t)=z6(t)=
Then (mind the orientation) ∫∫σF⋅ndS∫∫σF⋅ndS =∫10∫10F(σ1)⋅(∂σ1∂t×∂σ1∂s)dsdt=∫01∫01F(σ1)⋅(∂σ1∂t×∂σ1∂s)dsdt +∫10∫10F(σ2)⋅(∂σ2∂s×∂σ2∂t)dsdt+∫01∫01F(σ2)⋅(∂σ2∂s×∂σ2∂t)dsdt +∫10∫10F(σ3)⋅(∂σ3∂t×∂σ3∂s)dsdt+∫01∫01F(σ3)⋅(∂σ3∂t×∂σ3∂s)dsdt +∫10∫10F(σ4)⋅(∂σ4∂s×∂σ4∂t)dsdt+∫01∫01F(σ4)⋅(∂σ4∂s×∂σ4∂t)dsdt +∫10∫10F(σ5)⋅(∂σ5∂s×∂σ5∂t)dsdt+∫01∫01F(σ5)⋅(∂σ5∂s×∂σ5∂t)dsdt +∫10∫10F(σ6)⋅(∂σ6∂t×∂σ6∂s)dsdt+∫01∫01F(σ6)⋅(∂σ6∂t×∂σ6∂s)dsdt
== + + + + +
==
Part 2 - Using the Divergence Theorem
∫∫σF⋅ndS=∫∫∫GdivFdV=∫∫σF⋅ndS=∫∫∫GdivFdV=
==
∫∫
∫∫
∫∫
dxdydzdxdydz
==
Solution
To solve this problem and demonstrate the Divergence Theorem, we will compute the outward flux of the vector field F(x, y, z) = xi + 5yj + 4zk across the boundary of the rectangular prism, first using a surface integral and then using the triple integral over the volume. Let's approach this systematically:
Part 1: Using a Surface Integral
Step 1: Parameterization of Faces
The prism is defined by the ranges:
We parameterize each of the six faces of the prism, ensuring proper orientation (outward normals):
- Face : [ \sigma_1(s
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Divergence Theorem
Surface Integrals
Triple Integrals
Formulas
Flux across a surface: ∫∫_σ F ⋅ n dS
Divergence Theorem: ∫∫_σ F ⋅ n dS = ∫∫∫_G (div F) dV
Divergence of a vector field: div F = ∂F_x/∂x + ∂F_y/∂y + ∂F_z/∂z
Theorems
Divergence Theorem
Suitable Grade Level
Undergraduate Level (Calculus III or Advanced Calculus)
Related Recommendation
Compute the Flux of Vector Field F(x,y,z)=6i + 4j + 5k through a Rectangular Region
Calculate Flux Using Divergence Theorem for Unit Sphere
Calculate Flux Using the Divergence Theorem for a Tetrahedron
Calculate Flux of F = 6zi - 5yj + 6xk Through a Sphere Using Divergence Theorem
Compute Flux of Vector Field Through a Parabolic Surface