Math Problem Statement

  1. Calculate the flux of the vector field H= x^2i+y^2j+z^2k from S integral H*dA over the surface of the cube S, when the corner of the cube is at the origin, the length of the sides is 1 and the sides are parallel to the coordinate axes (other corners at points (0,0,1),(0,1,0), (1,0,0), (1,1,0) and (1,1,1))

Solution

To calculate the flux of the vector field H=x2i+y2j+z2k\mathbf{H} = x^2\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k} through the surface of the cube SS, we use the Divergence Theorem. The Divergence Theorem states:

SHdA=V(H)dV\int_S \mathbf{H} \cdot \mathbf{dA} = \int_V (\nabla \cdot \mathbf{H}) \, dV

where:

  • SS is the closed surface of the cube,
  • VV is the volume enclosed by SS,
  • H\nabla \cdot \mathbf{H} is the divergence of H\mathbf{H}.

Step 1: Compute the divergence of H\mathbf{H}

H=x(x2)+y(y2)+z(z2)\nabla \cdot \mathbf{H} = \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial z}(z^2)

H=2x+2y+2z\nabla \cdot \mathbf{H} = 2x + 2y + 2z

Step 2: Set up the volume integral

The volume VV of the cube is defined by 0x,y,z10 \leq x, y, z \leq 1. Substituting the divergence, the integral becomes:

V(H)dV=010101(2x+2y+2z)dxdydz\int_V (\nabla \cdot \mathbf{H}) \, dV = \int_0^1 \int_0^1 \int_0^1 (2x + 2y + 2z) \, dx \, dy \, dz

Step 3: Evaluate the triple integral

We can split the integral into three parts:

010101(2x+2y+2z)dxdydz=2010101xdxdydz+2010101ydxdydz+2010101zdxdydz\int_0^1 \int_0^1 \int_0^1 (2x + 2y + 2z) \, dx \, dy \, dz = 2 \int_0^1 \int_0^1 \int_0^1 x \, dx \, dy \, dz + 2 \int_0^1 \int_0^1 \int_0^1 y \, dx \, dy \, dz + 2 \int_0^1 \int_0^1 \int_0^1 z \, dx \, dy \, dz

First term:

2010101xdxdydz=20101[x22]01dydz=2010112dydz=20112dz=12 \int_0^1 \int_0^1 \int_0^1 x \, dx \, dy \, dz = 2 \int_0^1 \int_0^1 \left[\frac{x^2}{2}\right]_0^1 dy \, dz = 2 \int_0^1 \int_0^1 \frac{1}{2} \, dy \, dz = 2 \int_0^1 \frac{1}{2} \, dz = 1

Second term:

2010101ydxdydz=20101y01dxdydz=20101ydydz=201[y22]01dz=20112dz=12 \int_0^1 \int_0^1 \int_0^1 y \, dx \, dy \, dz = 2 \int_0^1 \int_0^1 y \int_0^1 dx \, dy \, dz = 2 \int_0^1 \int_0^1 y \, dy \, dz = 2 \int_0^1 \left[\frac{y^2}{2}\right]_0^1 dz = 2 \int_0^1 \frac{1}{2} \, dz = 1

Third term:

2010101zdxdydz=20101z01dxdydz=20101zdydz=201[z22]01dz=20112dz=12 \int_0^1 \int_0^1 \int_0^1 z \, dx \, dy \, dz = 2 \int_0^1 \int_0^1 z \int_0^1 dx \, dy \, dz = 2 \int_0^1 \int_0^1 z \, dy \, dz = 2 \int_0^1 \left[\frac{z^2}{2}\right]_0^1 dz = 2 \int_0^1 \frac{1}{2} \, dz = 1

Step 4: Add the results

Adding the contributions of all three terms:

V(H)dV=1+1+1=3\int_V (\nabla \cdot \mathbf{H}) \, dV = 1 + 1 + 1 = 3

Final Answer:

The flux of H\mathbf{H} through the surface of the cube is:

3\boxed{3}

Would you like a detailed breakdown of any of these steps or have additional questions? Here are related problems for practice:

  1. What is the flux of a constant vector field through a cube?
  2. How does the Divergence Theorem apply to spherical surfaces?
  3. Calculate the flux of H=xi+yj+zk\mathbf{H} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} through a cube of side length 2.
  4. How does the flux through a cube change if the vector field is H=x3i+y3j+z3k\mathbf{H} = x^3\mathbf{i} + y^3\mathbf{j} + z^3\mathbf{k}?
  5. What happens if the cube is rotated but retains the same side lengths?

Tip: Always check the boundaries of the volume carefully when applying the Divergence Theorem!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Divergence Theorem
Flux Calculation
Triple Integrals

Formulas

Flux formula: ∫_S (H ⋅ dA) = ∫_V (∇ ⋅ H) dV
Divergence: ∇ ⋅ H = ∂(H_x)/∂x + ∂(H_y)/∂y + ∂(H_z)/∂z

Theorems

Divergence Theorem

Suitable Grade Level

Undergraduate (Calculus III or Advanced Math)