Math Problem Statement

Find the distribution of X1 = Y1 - Y2 + Y3, where Y = (Y1, Y2, Y3)' follows a multivariate normal distribution with mean vector [4, 6, 10]' and covariance matrix [[8, 5, 0], [5, 12, 4], [0, 4, 9]].

Solution

In the given problem, we are dealing with a multivariate normal (MVN) distribution of a random vector Y=(Y1,Y2,Y3)\mathbf{Y} = (Y_1, Y_2, Y_3)' where:

YMVN((4610),(8505124049))\mathbf{Y} \sim \text{MVN} \left( \begin{pmatrix} 4 \\ 6 \\ 10 \end{pmatrix}, \begin{pmatrix} 8 & 5 & 0 \\ 5 & 12 & 4 \\ 0 & 4 & 9 \end{pmatrix} \right)

We are tasked with finding the distribution of the linear combination X1=Y1Y2+Y3X_1 = Y_1 - Y_2 + Y_3.

Step 1: Distribution of a Linear Combination of MVN Variables

If YMVN(μY,ΣY)\mathbf{Y} \sim \text{MVN}(\mu_Y, \Sigma_Y), and X1=aTYX_1 = \mathbf{a}^T \mathbf{Y} is a linear combination of the elements of Y\mathbf{Y}, where a=[1,1,1]\mathbf{a} = [1, -1, 1], then:

X1N(μX1,σX12)X_1 \sim \mathcal{N}( \mu_{X_1}, \sigma^2_{X_1})

Mean of X1X_1

The mean of X1X_1 is given by:

μX1=aTμY=[1,1,1](4610)\mu_{X_1} = \mathbf{a}^T \mu_Y = [1, -1, 1] \begin{pmatrix} 4 \\ 6 \\ 10 \end{pmatrix}

μX1=1416+110=46+10=8\mu_{X_1} = 1 \cdot 4 - 1 \cdot 6 + 1 \cdot 10 = 4 - 6 + 10 = 8

Variance of X1X_1

The variance of X1X_1 is given by:

σX12=aTΣYa\sigma^2_{X_1} = \mathbf{a}^T \Sigma_Y \mathbf{a}

Let's compute this in detail. We have:

ΣY=(8505124049)\Sigma_Y = \begin{pmatrix} 8 & 5 & 0 \\ 5 & 12 & 4 \\ 0 & 4 & 9 \end{pmatrix}

And a=[1,1,1]\mathbf{a} = [1, -1, 1].

First, let's compute ΣYa\Sigma_Y \mathbf{a}:

= \begin{pmatrix} 8 \cdot 1 + 5 \cdot (-1) + 0 \cdot 1 \\ 5 \cdot 1 + 12 \cdot (-1) + 4 \cdot 1 \\ 0 \cdot 1 + 4 \cdot (-1) + 9 \cdot 1 \end{pmatrix} = \begin{pmatrix} 8 - 5 + 0 \\ 5 - 12 + 4 \\ 0 - 4 + 9 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 5 \end{pmatrix}$$ Now, compute $$\mathbf{a}^T (\Sigma_Y \mathbf{a})$$: $$\mathbf{a}^T \begin{pmatrix} 3 \\ -3 \\ 5 \end{pmatrix} = 1 \cdot 3 + (-1) \cdot (-3) + 1 \cdot 5 = 3 + 3 + 5 = 11$$ Thus, the variance of $$X_1$$ is $$\sigma^2_{X_1} = 11$$. ### Final Distribution of $$X_1$$ $$X_1 \sim \mathcal{N}(8, 11)$$ Would you like further details on how the calculations were done, or do you have any additional questions? ### Related Questions: 1. How do you compute the covariance between two different linear combinations of multivariate normal variables? 2. What is the role of the covariance matrix in multivariate normal distributions? 3. How does the structure of the covariance matrix affect the independence of the components in $$\mathbf{Y}$$? 4. What changes if we introduce additional linear combinations to the problem? 5. How does the distribution of $$X_1$$ compare to other linear combinations of $$\mathbf{Y}$$? ### Tip: When dealing with linear combinations of multivariate normal distributions, always check if the covariance matrix has any special structure, such as block-diagonal, which can simplify computations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariate Normal Distribution
Linear Combinations
Mean and Covariance Matrices

Formulas

X1 = a^T * Y, where a = [1, -1, 1]
Mean of X1: μ_X1 = a^T * μ_Y
Variance of X1: σ^2_X1 = a^T * Σ_Y * a

Theorems

Linear transformation of a multivariate normal random vector

Suitable Grade Level

Undergraduate (Statistics/Probability)