Math Problem Statement

Give me some math problems using demential analysis with answers

Solution

Here are five math problems involving dimensional analysis, along with their solutions:

1. Speed Conversion

A car is traveling at a speed of 90 kilometers per hour. Convert this speed to meters per second using dimensional analysis.

Solution: Given: 90 km/h\text{Given: } 90 \ \text{km/h} Using conversion factors: 1 km=1000 m,1 hour=3600 seconds1 \ \text{km} = 1000 \ \text{m}, \quad 1 \ \text{hour} = 3600 \ \text{seconds} 90 km/h×1000 m1 km×1 hour3600 seconds=90×10003600=25 m/s90 \ \text{km/h} \times \frac{1000 \ \text{m}}{1 \ \text{km}} \times \frac{1 \ \text{hour}}{3600 \ \text{seconds}} = 90 \times \frac{1000}{3600} = 25 \ \text{m/s} Answer: 25 meters per second (m/s)


2. Time Conversion

Convert 5 years into seconds using dimensional analysis.

Solution: Given: 5 years\text{Given: } 5 \ \text{years} Using conversion factors: 1 year=365.25 days,1 day=24 hours,1 hour=3600 seconds1 \ \text{year} = 365.25 \ \text{days}, \quad 1 \ \text{day} = 24 \ \text{hours}, \quad 1 \ \text{hour} = 3600 \ \text{seconds} 5 years×365.25 days1 year×24 hours1 day×3600 seconds1 hour5 \ \text{years} \times \frac{365.25 \ \text{days}}{1 \ \text{year}} \times \frac{24 \ \text{hours}}{1 \ \text{day}} \times \frac{3600 \ \text{seconds}}{1 \ \text{hour}} =5×365.25×24×3600=157,788,000 seconds= 5 \times 365.25 \times 24 \times 3600 = 157,788,000 \ \text{seconds} Answer: 157,788,000 seconds


3. Density Calculation

The density of a substance is given as 0.8 grams per cubic centimeter (g/cm³). Convert this density to kilograms per cubic meter (kg/m³) using dimensional analysis.

Solution: Given: 0.8 g/cm3\text{Given: } 0.8 \ \text{g/cm}^3 Using conversion factors: 1 kg=1000 g,1 cm=0.01 m1 cm3=(0.01)3 m3=106 m31 \ \text{kg} = 1000 \ \text{g}, \quad 1 \ \text{cm} = 0.01 \ \text{m} \quad \Rightarrow \quad 1 \ \text{cm}^3 = (0.01)^3 \ \text{m}^3 = 10^{-6} \ \text{m}^3 0.8 g/cm3×1000 g1 kg×1 cm3106 m30.8 \ \text{g/cm}^3 \times \frac{1000 \ \text{g}}{1 \ \text{kg}} \times \frac{1 \ \text{cm}^3}{10^{-6} \ \text{m}^3} =0.8×1000×106=800,000 kg/m3= 0.8 \times 1000 \times 10^6 = 800,000 \ \text{kg/m}^3 Answer: 800,000 kilograms per cubic meter (kg/m³)


4. Force Conversion

A force is measured as 25 Newtons (N). Convert this force to dynes (dyn) using dimensional analysis. Recall that 1 N=105 dyn1 \ \text{N} = 10^5 \ \text{dyn}.

Solution: Given: 25 N\text{Given: } 25 \ \text{N} Using the conversion factor: 1 N=105 dyn1 \ \text{N} = 10^5 \ \text{dyn} 25 N×105 dyn/N=25×105=2.5×106 dyn25 \ \text{N} \times 10^5 \ \text{dyn/N} = 25 \times 10^5 = 2.5 \times 10^6 \ \text{dyn} Answer: 2.5×1062.5 \times 10^6 dynes


5. Pressure Conversion

The atmospheric pressure at sea level is approximately 101,325 Pa101,325 \ \text{Pa}. Convert this pressure into atmospheres (atm) using dimensional analysis. Recall that 1 atm=101,325 Pa1 \ \text{atm} = 101,325 \ \text{Pa}.

Solution: Given: 101,325 Pa\text{Given: } 101,325 \ \text{Pa} Using the conversion factor: 1 atm=101,325 Pa1 \ \text{atm} = 101,325 \ \text{Pa} 101,325 Pa×1 atm101,325 Pa=1 atm101,325 \ \text{Pa} \times \frac{1 \ \text{atm}}{101,325 \ \text{Pa}} = 1 \ \text{atm} Answer: 1 atmosphere (atm)


Do you want details or have any questions?


5 Related Questions:

  1. How do you convert miles per hour (mph) to meters per second (m/s)?
  2. Convert a temperature change of 5°C to a change in Fahrenheit using dimensional analysis.
  3. How can dimensional analysis be used to check the correctness of a physics equation?
  4. Convert 2 gallons to liters, given that 1 gallon = 3.785 liters.
  5. How do you convert energy from joules to calories using dimensional analysis?

Tip:

Always check that the dimensions on both sides of an equation match when using dimensional analysis to verify correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Dimensional Analysis
Unit Conversions
Physics-related Quantities

Formulas

Speed Conversion: v (m/s) = v (km/h) × 1000 / 3600
Time Conversion: time (s) = years × 365.25 × 24 × 3600
Density Conversion: ρ (kg/m³) = ρ (g/cm³) × 1000 × 10⁶
Force Conversion: F (dyn) = F (N) × 10⁵
Pressure Conversion: P (atm) = P (Pa) / 101,325

Theorems

Dimensional Homogeneity
Conversion Factor Method

Suitable Grade Level

Grades 10-12