Math Problem Statement

Tentukan \( \frac{dy}{dx} \) jika diketahui \( x = \arccos(e^t) \) dan \( y = \arcsin(e^{2t}) \).

Solution

Let's solve the problem step by step. The problem requires finding dydx\frac{dy}{dx}, given:

x=arccos(et)andy=arcsin(e2t).x = \arccos(e^t) \quad \text{and} \quad y = \arcsin(e^{2t}).

Solution:

To find dydx\frac{dy}{dx}, we use the chain rule: dydx=dydtdxdt.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.

Step 1: Differentiate x=arccos(et)x = \arccos(e^t)

The derivative of arccos(u)\arccos(u) with respect to tt is: [ \frac{d}{dt}[\arccos(e^t)] = \frac{-1}{\sqrt{1 - (e^t)^2}} \cdot \frac{d}{dt}[e^t], ] where ddt[et]=et\frac{d}{dt}[e^t] = e^t. Thus: [ \frac{dx}{dt} = \frac{-e^t}{\sqrt{1 - e^{2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Inverse Trigonometric Functions

Formulas

\( \frac{d}{dt}[\arccos(u)] = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dt} \)
\( \frac{d}{dt}[\arcsin(v)] = \frac{1}{\sqrt{1 - v^2}} \cdot \frac{dv}{dt} \)
Chain Rule: \( \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \)

Theorems

Chain Rule
Differentiation Rules for Inverse Trigonometric Functions

Suitable Grade Level

Undergraduate Calculus or Advanced High School